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Introduction

What?
I A Bayesian clustering of uni-variate

functions and multi-dimensional
curves.

I A GMM with an unknown
reparamatrization for each cluster
to be estimated.

How?
I Reducing the complexity of

reparametrization functions when
dealing with the Hilbert sphere.

I The spherical HMC sampling for
spherical constraint distributions.

Discussion and conclusion

I We proposed a novel Bayesian
clustering of uni-variate functions
and multidimensional curves.

I The proposed model was tested on
multiple simulated and real
datasets.

I Several benefits of our proposal
compared to the state-of-the-art
methods.

I This work remains valid for other
models, e.g., curve registration,
regression and classification.

Perspectives

I This work can be extended for more
complex domains for new aspects
of manifold learning, e.g., surfaces.

Publication

I A. Fradi and C. Samir, “Bayesian
Cluster Analysis for Registration
and Clustering Homogeneous
Subgroups in Multidimensional
Functional Data”, Communication
in Statistics, 2020.

Illustration of our framework

I Observations: N curves β1, . . . , βN with βi : I = [0, 1]→ Rd; d ≥ 1.
I Goal: Assign each curve to one of K clusters with K << N.
I Notations:
. T = (t1, . . . , tn) denote a discretization of I and βi ◦ F(T) that of βi.
. F is a reparametrization, identified with a cumulative density function, belonging to

F =
{

F : I→ I |F(0) = 0, F(1) = 1, and Ḟ is nonnegative
}

I Remark: The shape space of curves endowed with the elastic metric is nonlinear→ Each βi is represented by

its q-function (SRVF) qi(t) = β̇i(t)/
√
||β̇i(t)||2→ βi ◦ F is then represented by q∗i (t) =

√
Ḟ(t)qi(F(t)).

Problem reformulation and main contributions

I F is a nonlinear group of diffeomorphisms for the composition operation with no natural metric→ Optimizing
a cost function over F ∈ F is computationally intractable.

I F is isometrically mapped to the Hilbert upper-hemisphere

H =
{
ψ ≡

√
Ḟ ∈ L2(I) |ψ is nonnegative, and ||ψ||L2 = 1

}
I Although H is more simple than F , it remains infinite-dimensional→ Finite empirical approximation.
I If ψ(t) ∼ GP

(
0, c(t, s)

)
, the truncated Karhunen-Loève expansion of F is

Fm(t) =
m∑

j=1

a2
j

∫ t

0
φ2

j (s)ds + 2
m∑

j=1

m∑
r=j+1

ajar

∫ t

0
φj(s)φr(s)ds with aj

ind∼ N
(
0, λj

)
I Estimating the unknown reparametrization Fk for k-th cluster, k = 1, . . . ,K, is necessary before clustering.
I Estimating Fk

m is equivalent to estimating Ak = (ak
1, . . . , ak

m) ∈ Sm−1.

Gaussian mixture model (GMM)

I Assuming that q∗i (T)|Ci = k ∼ N
(
q̃k(T), γ2I

)
where we draw a class Ci under πk = p(Ci = k).

I The prior on Ak satisfies

p(Ak) ∝ exp
(− m∑

j=1

ak
j

2

2λj

)× δAk∈Sm−1

I Given D = {qi}N
i=1, the log-posterior of A1, . . . ,AK is

log p(A1, ...,AK|D, π1, ..., πK, q̃1(T), ..., q̃K(T), γ2) ∝
N∑

i=1

log
( K∑

k=1

πk exp
(− 1

2γ2
||q∗i (T)−q̃k(T)||22

))

−
1

2

K∑
k=1

m∑
j=1

ak
j

2

λj

I Spherical HMC for the MAP of Ak with an extra Gibbs sampling for πk, q̃k(T) and γ2.

Different cochlear shapes

CT scan (left), surface without the curve
(middle), and with the extracted curve (right).
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The reparametrization estimates (left) and
the Fréchet means (right).
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The probability that qi belongs to the first
class (left) and the predicted cluster (right).

Illustration of spherical HMC sampling
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Comparison with existing methods

Methods ER SP SE

Euclidean-GMM 41.75%58.07% 58.5%

Euclidean-kmeans 41.54%58.44% 58.5%

Geodesic-kmeans 25.11% 74.4% 75.45%

Geodesic-kmedoids10.85% 89.8% 88.41%

Proposed 4.26% 94% 97.73%
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