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Introduction

Background on Channel State Information (CSI)

e (CSI data as seen from the baseband signal process-
ing perspective is a random process in a high di-
mensional space (large number of receiving anten-
nas, large sampling in the frequency domain, etc.)

Physical considerations (e.g. ray-tracing channel
models) hint at an unknown low-dimensional man-
ifold structure of the CSI - roughly speaking, the
CSI is a continuous function of a limited number of
geometric and RF propagation parameters

Objectives

e Learning the geometrical structure of CSI data while involving as little expert knowledge as
possible

e Data-driven identification of the parameterizations or features adapted to estimation,
compression, prediction of CSI

Dimensionality reduction of CSI

Assumptions on data manifold
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e In practice, the observations x; are noisy in the ambi-

ent space Toy Example of a 1-dimensional

manifold embedded in R3.

Dimensionality Reduction

Principle: use distance between samples in order to learn f ~ ¢! up to an isometry.
General additional assumption on the sample indices S = {1,...,T}:

forall (i,j) e T CS xS (1)

lw; — wjll ~ d(z;, ;)

Non-parametric dimensionality reduction

o d(x;,x;) = ||z, — x|, T =S x S multi-dimensional scaling (MDS).

o dz;,x;)=|x; —x;|, T ={(i,j) € S xS :||x; — x;|| <n}: Isomap, UMAP
Main limitations

e Euclidean distance may not be adapted to the manifold X

e No explicit estimation of the mapping f: difficult out-of-sample extrapolation

Parameteric dimensionality reduction: f(x;) = fg(x;) with T =S x S

e Distance in the ambient space parameterized by 6

do(xi,x;) = ||fo(i) — fo(z;)|
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Triplets network

e Triplets networks consider a weaker assumption wrt (1)
d(xj,x;) < d(xk, ;) = Hw; —wi|| < ||lw, —wi|| forall (i,5,k)eT CS> (2
e In practice, we use side-information (timestamps) to define 7, i.e. triplets (¢, j, k) so that
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e Triplets network does not rely on the Euclidean distance on the ambient space minimizing

(dg(a:i,wj) — de(zi, k) + M>+

0 = I
arg min Z
(4,5,k)€T

Input data

Ambient

Far Space

sample

Lk

/ ( Common
v . \_ Weights 6

DNN
fe
w
& Latent
Space

Cost function
Ct

Experimental Results
Experimental Dataset

Several hours of joint CSI/position measurements with a commercial user equipment (UE)

e In total, of 3.5 x 10° CSI samples (sampling every 10ms)

e h; € C*288 (64 receive antennas, 288 frequency subcarriers, 64 x 288 = 18432)

Expert pre-processing

e Some CSI characteristics are not of interest: e.g. clock and
frequency offset between the UE and the base station

e In order to circumvent these impairments and to reduce
observation noise, we map the observations through a “pro-
jector” invariant wrt these characteristics

x; = p(hy) € R0 (ie. D = 1024) Used Neural Network

Dimensionality Reduction Results (d = 2)
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We generalize the triplets network criterion with known positions p; € R?
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