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Introduction

Background on Channel State Information (CSI)

• CSI data as seen from the baseband signal process-
ing perspective is a random process in a high di-
mensional space (large number of receiving anten-
nas, large sampling in the frequency domain, etc.)

• Physical considerations (e.g. ray-tracing channel
models) hint at an unknown low-dimensional man-
ifold structure of the CSI - roughly speaking, the
CSI is a continuous function of a limited number of
geometric and RF propagation parameters

Objectives

• Learning the geometrical structure of CSI data while involving as little expert knowledge as
possible

• Data-driven identification of the parameterizations or features adapted to estimation,
compression, prediction of CSI

Dimensionality reduction of CSI

Assumptions on data manifold

• X ⊂ RD is a d-dimensional and continuous set in the
Euclidean space RD with D � d

• We suppose that a generative model exists through
some unknown continuous mapping g : Rd 7→ X and
seek for a mapping f : RD 7→ Rd so that f ≈ g−1

Rd →
wi

g7→︸ ︷︷ ︸
Generative model

X ⊂ RD
xi︸ ︷︷ ︸

Noise-free observations

→ Rd
f7→ w′i︸ ︷︷ ︸

Dimensionality Reduction

• In practice, the observations xi are noisy in the ambi-
ent space

Noisy data xi

Manifold X

Toy Example of a 1-dimensional
manifold embedded in R3.

Dimensionality Reduction

Principle: use distance between samples in order to learn f ≈ g−1 up to an isometry.
General additional assumption on the sample indices S = {1, . . . , T}:

‖w′i −w′j‖ ≈ d(xi,xj) for all (i, j) ∈ T ⊂ S × S (1)

Non-parametric dimensionality reduction

• d(xi,xj) = ‖xi − xj‖, T = S × S : multi-dimensional scaling (MDS).

• d(xi,xj) = ‖xi − xj‖, T = {(i, j) ∈ S × S : ‖xi − xj‖ ≤ η}: Isomap, UMAP

Main limitations

• Euclidean distance may not be adapted to the manifold X
• No explicit estimation of the mapping f : difficult out-of-sample extrapolation

Parameteric dimensionality reduction: f(xi) = fθ(xi) with T = S × S
• Distance in the ambient space parameterized by θ

dθ(xi,xj) = ‖fθ(xi)− fθ(xj)‖
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Autoencoder

θ = argmin
θ

∑
i∈S
‖xi − fθ′ ◦ fθ(xi)‖2

Siamese network

θ = argmin
θ

∑
(i,j)∈T

(
‖xi−xj‖−dθ(xi,xj)

)2

Triplets network
• Triplets networks consider a weaker assumption wrt (1)

d(xj ,xi) ≤ d(xk,xi)⇒ ‖w′j −w′i‖ ≤ ‖w′k −w′i‖ for all (i, j, k) ∈ T ⊂ S3 (2)

• In practice, we use side-information (timestamps) to define T , i.e. triplets (i, j, k) so that

0 < |tj − ti| ≤ Tc
Tc < |tk − ti| ≤ Tf

}
⇒ d(xj ,xi) ≤ d(xk,xi)⇒ ‖w′j −w′i‖ ≤ ‖w′k −w′i‖ (3)

• Triplets network does not rely on the Euclidean distance on the ambient space minimizing

θ = argmin
θ

∑
(i,j,k)∈T

(
dθ(xi,xj)− dθ(xi,xk) +M

)+
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Experimental Results

Experimental Dataset

Several hours of joint CSI/position measurements with a commercial user equipment (UE)

• In total, of 3.5× 106 CSI samples (sampling every 10ms)

• ht ∈ C64×288 (64 receive antennas, 288 frequency subcarriers, 64× 288 = 18432)

Expert pre-processing

• Some CSI characteristics are not of interest: e.g. clock and
frequency offset between the UE and the base station

• In order to circumvent these impairments and to reduce
observation noise, we map the observations through a “pro-
jector” invariant wrt these characteristics

xt = p(ht) ∈ R1024 (i.e. D = 1024)
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Dimensionality Reduction Results (d = 2)

Geographic position
Principal Component

Analysis (PCA) Autoencoder

Siamese network UMAP Triplets (margin cost)

Semi-supervised extension
We generalize the triplets network criterion with known positions pi ∈ R2

θ = argmin
θ

1

|T |
∑

(i,j,k)∈T

(
dθ(xi,xj)− dθ(xi,xk) +M

)+

+
α

|P|
∑
i∈P
‖fθ(xi)− pi‖

Geographic position

Unsupervised (α = 0,M = 1) Semi-supervised (α = 1,
M = 1, |P| = 45)


