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Idea debate

Idea debate

Preamble

Aγεωµετρητoς µηδεις εισιτω

(Let none but geometers enter here !)

Plato
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Idea debate

Idea debate

General Relativity

is not solely a theory of gravitation which would be reduced to predict tiny
effects but –may be above all– it is a consistent framework for mechanics
and physics of continua

Inspiration sources :

Jean-Marie Souriau

Lect. Notes in Math. 676 (1976)

Claude Vallée, IJES (1981)
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Idea debate

Some key ideas :

We take the Relativity as model, process termed ”geometrization”,
but with Galileo symmetry group

The entropy is generalized in the form of a 4-vector and the
temperature in the form of a 5-vector

We generalize the energy-momentum tensor by associating the
”mass” with it

We decompose the new object into reversible and dissipative parts

We obtain a covariant and more compact writing of the 1st and 2nd

principles

Galilean Mechanics and

Thermodynamics of Continua (2016)

Éléments de Mécanique galiléenne (2019)
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Idea debate

Some key ideas :

Classical : Clausius-Duhem inequality

ρ
ds

dt
− ρ

θ

dqI
dt

+ div

(
h

θ

)
≥ 0

Truesdell (1952)

Relativistic : 2nd principle Souriau (1976)

Div ~S ≥ 0

Our aim is to find the classical counterpart of this principle of
relativistic thermodynamics
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Galilean and Bargmannian transformations

Absolute space and time

Newton-Cartan structure :

a 1-form τ = dt (clock-form)

a 2-contravariant symmetric tensor h of signature (0 + ++)

such that τ · h = 0

To know more : Duval, Küntzle, Trautman, Horváthy, Hartong,

Bergshoeff, Van den Bleeken, ...
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Galilean and Bargmannian transformations

Galilean geometry

A geometry is a group action Klein Erlangen program (1872)

The Galilean transformations leave invariant :

the durations (or τ )
the distances (or h)
Uniform Straight Motion

then affine of the form X = P X ′ + C with :

P =

(
1 0
u R

)
, C =

(
τ0

k

)
where u ∈ R3 is the Galilean boost and R is a rotation

Their set is Galileo’s group, a Lie group of dimension 10

The Galilean geometry is not Riemannian !
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Galilean and Bargmannian transformations

Galilean vectors

Galilean vectors may be seen as orbits
for the action of Galileo’s group onto the vector components

A Galilean vector ~V , represented by a column V , has a transformation
law V = P V ′ where P is a Galilean linear transformation

The 4-velocity ~U represented by the column

U =
dX

dt
=

(
1
ẋ

)
=

(
1
v

)
Its transformation law U = P U ′ provides the velocity addition formula

v = u + R v ′
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Galilean and Bargmannian transformations

Galilean vectors

Theorem

A Galilean vector ~V of non-vanishing time component V 0 is the 4-flux of it

For instance, the 4-flux of mass is ~N = ρ ~U

Conservation of V 0 is Div ~V = 0

Classification of Galilean vectors

Relativistic Classical

timelike
lightlike

lightlike

spacelike
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Galilean and Bargmannian transformations

The fifth dimension...

Figure – 5D simulator (La Foux, Saint-Tropez)
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Galilean and Bargmannian transformations

Bargmannian transformations

We consider a line bundle π :M→ M̂ of dimension 5 and a section :

f̂ :M→ M̂ : X 7→ X̂ = f̂ (X )

We built a group of affine transformations X̂ ′ 7→ X̂ = P̂ X̂ ′ + Ĉ of R5

which are Galilean when acting onto the space-time hence of the
form :

P̂ =

(
P 0
Φ α

)
,

where P is Galilean, Φ and α must have a physical meaning linked to
the energy

Thus we know that, under the action of a boost u and a rotation R,
the kinetic energy is transformed according to :

e =
1

2
m ‖ u + R v ′ ‖2=

1

2
m ‖ u ‖2 +mu · (R v ′) +

1

2
m ‖ v ′ ‖2 .
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Galilean and Bargmannian transformations

Bargmannian transformations

We claim that the fifth dimension is linked to the energy by :

dz =
e

m
dt =

1

2
‖ u ‖2 dt ′ + uTR dx ′ + dz ′

that leads to consider the Bargmannian transformations of R5 of
which the linear part is :

P̂ =

 1 0 0
u R 0

1
2 ‖ u ‖

2 uTR 1


Their set is the Bargmann’s group,
a Lie group of dimension 11,
introduced in quantum mechanics for cohomologic reasons
but which turns out very useful in Thermodynamics !
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Galilean and Bargmannian transformations

A fragance of symplectic geometry

(U , ω) symplectic manifold
G Lie group acting on by a 7→ a · ξ
g∗ the dual of its Lie algebra g acting by Z 7→ Z · ξ

ξ 7→ µ = ψ(ξ) ∈ g∗ is a momentum map (Souriau) if

∀Z ∈ g, ω(Z · ξ, dξ) = −d(ψ(ξ)Z )

Theorem (Souriau)

There exists cocs : G 7→ g∗ called a symplectic cocycle
such that cocs(a) = ψ(a · ξ)− Ad∗(a)ψ(ξ)

modulo a coboundary cobsµ0 = Ad∗(a)µ0 − µ0, it defines
a class of symplectic cohomology [cocs] ∈ H1(G ; g∗),
generally null.

A noticeable exception is Galileo’s group
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Galilean and Bargmannian transformations

Bargman’s group as central extension of Galileo’s group

The extension Ĝ = G × N with N Abelian is a group for

â â′ = (a, θ)
(
a′, θ′

)
=
(
aa′, θ + θ′ + coc

(
a, a′

))
if the N-cocycle coc verifies a cocycle identity
ensuring the associativity

one can define also a N-coboundary
cobθ (a, a′) = θ (a) + θ (a′)− θ (aa′)

Adjoint representation of Ĝ
Ad
(
â−1
)

(Z ,Y ) =
(
Ad
(
a−1
)
Z , Y + B(a)Z

)
with B(a) : g→ n : Z 7→ Y = Dcoc(e,a) (Z , 0) + Dcoc(a−1,a) (0,Za)

Co-adjoint representation of Ĝ
Ad∗ (â) (µ, ξ) = (Ad∗ (a)µ+ C (a) ξ, ξ)
with the transpose C (a) : n∗ → g∗ of B(a)
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Galilean and Bargmannian transformations

Bargman’s group as central extension of Galileo’s group

reminder :
B(a)Z = Dcoc(e,a) (Z , 0) + Dcoc(a−1,a) (0,Za) , C (a) = t(B(a))

Correspondance :
If coc is a N-cocycle, a 7→ C (a)η is a symplectic cocycle
If cob is a N-coboundary, a 7→ C (a)η is a symplectic coboundary

Construction : a group G with [cocs] 6= 0 being given, we find an
extension Ĝ of null symplectic cohomology by determining the
N-cocycle coc solution of the (non standard) PDS :

C (a) ξ = cocs (a)

Application : G = Galileo’s group, Ĝ = G × R = Bargmann’s group
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Temperature 5-vector and friction tensor

Temperature 5-vector

The reciprocal temperature β = 1 / θ = 1 / kBT is generalized as a
Bargmannian 5-vector :

Ŵ =

(
W
ζ

)
=

 β
w
ζ

 ,

The transformation law Ŵ ′ = P̂−1Ŵ leads to :

β′ = β , w ′ = RT (w − βu), ζ ′ = ζ − w · u +
β

2
‖ u ‖2

Picking up u = w / β, we obtain the reduced form

Ŵ ′ =

 β
0
ζint


interpreted as the temperature vector of a volume element at rest

Géry de Saxcé (Université Lille - LaMcube - UMR CNRS 9013)Galilean Mechanics and Thermodynamics of ContinuaSPIG 2020 Les Houches 16 / 49



Temperature 5-vector and friction tensor

Temperature 5-vector

”Reduce and boost” method :
Starting from the reduced form, we apply the Galilean transformation of
boost v , that gives :

Ŵ =

 β
w
ζ

 ,=

 β
β v

ζint + β
2 ‖ v ‖

2

 .

where ζ is Planck’s potential or Massieu’s potential
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Temperature 5-vector and friction tensor

Friction tensor

Friction tensor

The friction tensor is a mixed 1-covariant and 1-contravariant tensor :

f = ∇ ~W

represented by the 4× 4 matrix f = ∇W

This object introduced by Souriau merges the temperature gradient
and the strain velocity

In dimension 5, we can also introduce

f̂ = ∇ ~̂W

represented by a 5× 4 matrix

f̂ = ∇ Ŵ =

(
f
∇ ζ

)
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Momentum tensor

Momentum tensor

Method

Taking care to walk up and down the
rough ground of the reality (Wittgenstein),

we want to work, in dimension 4 ou 5,
with tensors of which the transformation law
respects the physics

The meaning of the components is not given a priori but results, through
the transformation law, from the choice of the symmetry group
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Momentum tensor

Momentum tensor

Momentum tensor

Linear map from the tangent space to M̂ at X̂ = f̂ (X ) into the tangent
space to M at X , hence a mixed tensor T̂ of rank 2

then a bundle map over the space-time T̂ : f̂ ∗(TM̂)→ TM
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Momentum tensor

Momentum tensor

Momentum tensor

Linear map from the tangent space to M̂ at X̂ = f̂ (X ) into the tangent
space to M at X , hence a mixed tensor T̂ of rank 2

Galilean momentum tensors : represented by a 4× 5 matrix of the
form :

T̂ =

(
H −pT ρ
k σ? p

)
where σ? is a 3× 3 symmetric matrix

In matrix form, the transformation law is :

T̂ ′ = P T̂ P̂−1

To reveal the physical meaning of the components ...
Géry de Saxcé (Université Lille - LaMcube - UMR CNRS 9013)Galilean Mechanics and Thermodynamics of ContinuaSPIG 2020 Les Houches 21 / 49



Momentum tensor

Momentum tensor

... we let the symmetry group act !

The transformation law provides :

ρ′ = ρ , p′ = RT (p−ρu), σ′? = RT (σ?+u pT +p uT −ρ u uT )R

H′ = H− u · p +
ρ

2
‖ u ‖2, k ′ = RT (k −H′u + σ∗u +

1

2
‖ u ‖2 p)

which leads to the reduced form :

T̂ ′ =

(
ρ eint 0 ρ
h′ σ′ 0

)
,

interpreted as the momentum of a volume element at rest
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Momentum tensor

Momentum tensor

”Reduce and boost” method : starting from the reduced form, we apply
a Galilean transformation law of boost v and rotation R and we interpret :

ρ as the density

p = ρ v as the linear momentum

σ? = σ − ρvvT as the dynamical stresses

H = ρ
(
eint + 1

2 ‖ v ‖
2
)

as the total energy

k = h +Hv − σv as the energy flux

with :

the heat flux h = R h′

the statical stresses σ = R σ′ RT
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Momentum tensor

Momentum tensor

Hence the boost method reveals the standard form of a
Galilean momentum tensor

Object structured into :

density ρ,

linear momentum p,

Cauchy’s statical stresses σ,

heat flux h,

Hamiltonian (per volume unit) H
represented by the matrix :

T̂ =


H −pT ρ

h +H p

ρ
− σ p

ρ
σ − 1

ρ
p pT p
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First and second principles

First principle

Momentum divergence

5-row div T̂ such that, for all smooth 5-vector field Ŵ :

Div (T̂ Ŵ ) = (Div T̂ ) Ŵ + Tr
(
T̂ ∇ Ŵ

)

Covariant form of the 1st principle

Div T̂ = 0
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First and second principles

First principle

In absence of gravity, we recover the balance equations of :

mass :
∂ρ

∂t
+ div (ρ v) = 0

linear momentum : ρ

[
∂v

∂t
+
∂v

∂x
v

]
= (div σ)T ,

energy :
∂H
∂t

+ div (h +Hv − σv) = 0
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First and second principles

The matter and its motion

Its motion is described by a line bundle κ :M→M0 : X 7→ x0 = κ(X )
where

the particle x0 is represented by its Lagrangian coordinates x0

its trajectory is the fiber κ−1(x0)

the position x of the event X gives its Eulerian coordinates at time t

the deformation gradient is F = ∂x
∂x0
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First and second principles

First principle

Reversible medium

if Planck’s potential ζ is a function of :
- the temperature vector W ,
- and the right Cauchy strain C = FTF ,
then the 4× 4 matrix

TR = U ΠR +

(
0 0

−σRv σR

)
with ΠR = −ρ ∂ζ

∂W σR = −2ρ
β F ∂ζ

∂C FT is such that :

♥ T̂R =
(
TR N

)
with N = ρU represents a momentum tensor T̂R

♦ Tr
(
T̂R∇Ŵ

)
= 0

♣ T̂R Ŵ =

(
ζ − ∂ζ

∂W
W

)
N
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First and second principles

First principle

Planck’s potential ζ is the prototype of thermodynamic potentials :

the internal energy eint = −∂ζint
∂β

the Galilean 4-vector ~S = T̂R
~̂W is the 4-flux ~S = s ~N of

the specific entropy s = ζint − β
∂ζint
∂β

the free energy ψ = − 1

β
ζint = −θ ζint allows to recover

−eint = θ
∂ψ

∂θ
− ψ, −s =

∂ψ

∂θ

The interest of ζ is that it generates all the other ones

Geometrization : S = QR
θ = QR · β becomes ~S = T̂R

~̂W
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First and second principles

Second principle

Additive decomposition of the momentum tensor

T̂ = T̂R + T̂I with

the reversible part T̂R represented by :

T̂R =

(
HR −pT ρ

HRv − σRv σR − vpT ρv

)
the irreversible one T̂I represented by :

T̂I =

(
HI 0 0

h +HI v − σI v σI 0

)
where σI are the dissipative stresses and HI = −ρqI is the
dissipative part of the energy due to the irreversible heat sources qI
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First and second principles

Second principle

Clock-form

Linear form τ = dt represented by an invariant row under Galilean trans-
formation :

τ =
(

1 0 0 0
)

Covariant form of the second principle

The local production of entropy of a medium caracterized by a tempera-

ture vector ~̂W and a momentum tensor T̂ is non negative :

Φ = Div
(
T̂ ~̂W

)
−
(
τ (f ( ~U))

) (
τ (TI ( ~U))

)
≥ 0

and vanishes if and only if the process is reversible
[de Saxcé & Vallée IJES 2012]
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First and second principles

Second principle

The local production of entropy

Φ = Div
(
T̂ ~̂W

)
−
(
τ (f ( ~U))

) (
τ (TI ( ~U))

)
is a Galilean invariant !

After some manipulations, it can be putted in the classical form of
Clausius-Duhem inequality

Φ = ρ
ds

dt
− ρ

θ

dqI
dt

+ div

(
h

θ

)
≥ 0
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Thermodynamics and Galilean gravitation

Galilean coordinates

Theorem

A necessary and sufficient condition for the Jacobian matrix P = ∂X ′

∂X of a
coordinate change X 7→ X ′ being a linear Galilean transformation is that
this change is compound of a rigid motion and a clock change :

x ′ = (R (t))T (x − x0 (t)), t ′ = t + τ0

The coordinate systems that are deduced one from each other by
such changes are called Galilean coordinate systems.

G being the group of linear Galilean transformations, this theorem
shows that the G -structure [Kobayashi 1963] is integrable
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Thermodynamics and Galilean gravitation

Galilean gravitation

Theorem

The Galilean connexions, that is the symmetric connections of which the
matrix Γ belongs to the Lie algebra of Galileo’s group, are such that :

Γ(dX ) =

(
0 0

Ω× dx − g dt j(Ω) dt

)
,

where j(Ω) is the unique skew-symmetric matrix such that j(Ω)v = Ω× v

g is the classical gravity

Ω is a new object called spinning

Géry de Saxcé (Université Lille - LaMcube - UMR CNRS 9013)Galilean Mechanics and Thermodynamics of ContinuaSPIG 2020 Les Houches 34 / 49



Thermodynamics and Galilean gravitation

Equation of motion of a particle

T = mU being the linear 4-momentum, the covariant equation of
motion reads [Élie Cartan 1923] :

∇T = dT + Γ(dX )T = 0

or in tensor notations

∇Tα = dTα + ΓαµβdX
µT β = 0

In the Galilean coordinate systems, its general form is

ṁ = 0, ṗ = m (g − 2 Ω× v)

[Souriau, Structure des systèmes dynamiques, 1970]

It allows to explain simply the motion of Foucault’s pendulum without
neglecting the centripetal force as in the classical textbook
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Thermodynamics and Galilean gravitation

Thermodynamics and Galilean gravitation

The down side of the cards ...

Galileo’s group does not preserve space-time metrics

Bargmann’s group preserves the metrics ds2 =‖ dx ‖2 −2 dz dt, then
the space M̂ is a riemannian manifold and, in this case, the
G -structure is not in general integrable, the obstruction being the
curvature.

In other words, we are going to work, up to now, in linear frames
which are not associated to local coordinates (moving frames)

Hence we have to find frames associated to coordinate systems
(natural frames)
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Thermodynamics and Galilean gravitation

Thermodynamics and Galilean gravitation

With the potentials of the Galilean gravitation φ,A such that

g = −grad φ− ∂A

∂t
, Ω =

1

2
curl A

the Lagrangian is L(t, x , v) = 1
2 m ‖ v ‖

2 −m φ+ mA · v
that suggests to introduce a coordinate change

dz ′ =
L
m

dt = dz − φ dt + A · dx , dt ′ = dt, dx ′ = dx

In the new coordinates, the Bargmannian connection is

Γ̂(dX̂ ) =


0 0 0

j(Ω) dx − g dt j(Ω) dt 0(
∂φ

∂t
− A · g

)
dt [(grad φ− Ω× A) dt 0

+ (grad φ− Ω× A) · dx −gradsAdx ]T


Géry de Saxcé (Université Lille - LaMcube - UMR CNRS 9013)Galilean Mechanics and Thermodynamics of ContinuaSPIG 2020 Les Houches 37 / 49



Thermodynamics and Galilean gravitation

Thermodynamics and Galilean gravitation

The developments are similar to the ones in absence of gravitation but
with some exceptions :

Planck’s potential becomes ζ = ζint + β
2 ‖ v ‖

2 −β φ + A · w
the Hamiltonian becomes H = ρ

(
eint + 1

2 ‖ v ‖
2 +φ− qI

)
,

the linear momentum becomes p = ρ (v + A).

In presence of gravitation, the first principle restitutes the balance
equations of the mass and of

the linear momentum : ρ
dv

dt
= (div σ)T + ρ (g − 2 Ω× v)

the energy :
∂H
∂t

+ div (h +Hv − σv) = ρ

(
∂φ

∂t
− ∂A

∂t
· v
)
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A smidgen of relativistic Thermodynamics

A smidgen of relativistic Thermodynamics

We come back to the relativistic model with Lorentz-Poincaré
symmetry group

In this approach, the temperature is transformed according to

θ′ = θ
γ = θ

√
1− ‖v‖

2

c2

This the temperature contraction !

thanks to Minkowski’s space-time metrics ds2 = c2dt2− ‖ dx ‖2, we
can associate to the 4-velocity ~U a single linear form U∗ represented
by

UTG =
(
γ, γ vT

) ( c2 0
0 −1R3

)
= c2

(
γ,− 1

c2
γ vT

)
,

which approaches c2τ when c approaches +∞
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A smidgen of relativistic Thermodynamics

A smidgen of relativistic Thermodynamics

By an epistemological reversal, we replace the clock-form τ by U∗/ c2 in
the Galilean expression of the 2nd principle, that lead to

Relativistic form of the 2nd principle

The local production of entropy of a medium characterized by a tempe-
rature vector ~W, a momentum tensor T̂ , a potential ζ and a 4-flux of mass
~N is non negative :

Φ = Div
(
T ~W + ζ ~N

)
− 1

c2

(
U∗(f ( ~U))

) 1

c2

(
U∗(TI ( ~U))

)
≥ 0 ,

and vanishes if and only if the process is reversible
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A smidgen of relativistic Thermodynamics

Thank you !

terra

aqua aer

ignis
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A smidgen of relativistic Thermodynamics
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A smidgen of relativistic Thermodynamics

Lie group statistical mechanics

In Structure des systèmes dynamiques (1970), Souriau proposed a
statistical mechanics model using geometric tools

Let dλ be a measure on the orbit orb (µ), identified to µ, and a Gibbs
probability measure p dλ with p = e−Θ(µ) = e−(z+µZ)

The normalization condition
∫
orb(µ) p dλ = 1 links the components by

z(Z ) = ln

∫
orb(µ)

e−µZ dλ

The corresponding entropy and mean momenta are :

s = −
∫
orb(µ)

p ln p dλ = z + M Z , M =

∫
orb(µ)

µ p dλ = − ∂z
∂Z
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A smidgen of relativistic Thermodynamics

Bridging the gap between both theories :

Souriau’s Lie group statistical mechanics

Souriau’s thermodynamics of continua
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A smidgen of relativistic Thermodynamics

Bridging the gap between both theories (1/5)

Step 1 : parameterizing the orbit. Galileo’s group is the set of
affine transformations t = t ′ + τ0, x = R x ′ + u t ′ + k where u is the
Galilean boost

The infinitesimal action Z · X is δt = δτ0, δx = δ$ × x + δu t + δk

The dualing pairing is

µZ = l · d$ − q · du + p · dk − e dτ0

where l is the angular momentum, q the passage, p the linear
momentum and e the energy

In the dual space g∗ of dimension 10, the generic orbits are
submanifolds parameterized by (q, p, n) ∈ R3 × R3 × S2 where
n = l / ‖ l ‖
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A smidgen of relativistic Thermodynamics

Bridging the gap between both theories (2/5)

Step 2 : modelling the deformation. We consider N identical
spinless particles in a box of volume V representing the elementary
volume of the continuum thermodynamics

For a coordinate change t = t ′, x = ϕ(t ′, s ′), the Jacobian matrix is

∂X

∂X ′
= P =

(
1 0
v F

)
If the box of initial volume V0 is at rest (v = 0) and the deformation
gradient F is uniform in the box, dλ is preserved

Replacing the orbit by the subset V0 × R3 × S2 and integrating gives

z =
1

2
ln(det(C ))− 3

2
lnβ + C te
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A smidgen of relativistic Thermodynamics

Bridging the gap between both theories (3/5 and 4/5)

Step 3 : boost method. A new coordinate system X̄ in which the
box has the velocity v can be deduced from X = P X̄ + C by
applying a boost u = −v . Leaving out the bars, we have

z =
1

2
ln(det(C ))− 3

2
lnβ +

m

2β
‖ w ‖2 +C te .

Step 4 : identification. Theorem
The transformation law of the temperature vector W = (β,w) and
Planck’s potential ζ is the same as the one of the components z ,Z
of the affine map Θ through the identification

Z = (−W , 0), z = m ζ
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A smidgen of relativistic Thermodynamics

Bridging the gap between both theories (5/5)

Step 5 : from Planck’s potential

ζ =
z

m
=

1

2m
ln(det(C ))− 3

2m
lnβ +

1

2β
‖ w ‖2 +C te

we deduce the linear 4-momentum Π = (H,−pT ) and Cauchy’s
stresses

H = ρ

(
3

2

kBT

m
+

1

2
‖ v ‖2

)
, p = ρv , σ = −q 1R3

where we recover the ideal gas law q = ρ
m kBT = N

V kBT
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A smidgen of relativistic Thermodynamics

Thank you !
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