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|dea debate

Preamble

AYEWUET pNTOS  UNJIELS ELOLTW
(Let none but geometers enter here!)

Plato
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|dea debate

General Relativity

is not solely a theory of gravitation which would be reduced to predict tiny

effects but —may be above all- it is a consistent framework for mechanics
and physics of continua

Inspiration sources :

Jean-Marie Souriau
Lect. Notes in Math. 676 (1976)

Claude Vallée, IJES (1981)
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Idea debate

Some key ideas :
@ We take the Relativity as model, process termed " geometrization”,
but with Galileo symmetry group

@ The entropy is generalized in the form of a 4-vector and the
temperature in the form of a 5-vector

o We generalize the energy-momentum tensor by associating the
"mass” with it

@ We decompose the new object into reversible and dissipative parts

@ We obtain a covariant and more compact writing of the 15t and 2"
principles

Galilean Mechanics and
Thermodynamics of Continua (2016)

Eléments de Mécanique galiléenne (2019)
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Idea debate

Some key ideas :

@ Classical : Clausius-Duhem inequality

Truesdell (1952)

o Relativistic : 2nd principle Souriau (1976)

Div § >0

@ Our aim is to find the classical counterpart of this principle of
relativistic thermodynamics
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Galilean and Bargmannian transformations

Absolute space and time

space-time M

chart

Newton-Cartan structure :

@ a 1-form T = dt (clock-form)

@ a 2-contravariant symmetric tensor h of signature (0 + ++)
such that 7-h =0

To know more : Duval, Kiintzle, Trautman, Horvathy, Hartong,
Bergshoeff, Van den Bleeken,
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Galilean and Bargmannian transformations

Galilean geometry

o A geometry is a group action Klein Erlangen program (1872)

The Galilean transformations leave invariant :

o the durations (or T)
o the distances (or h)
o Uniform Straight Motion

then affine of the form X = P X' + C with :
(10 (7
P=(u k) <=(%)

where u € R3 is the Galilean boost and R is a rotation

@ Their set is Galileo’s group, a Lie group of dimension 10
What's up, Voo 7

The Galilean geometry is not Riemannian ! 2 ‘; i
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Galilean and Bargmannian transformations

Galilean vectors

@ Galilean vectors may be seen as orbits
for the action of Galileo’s group onto the vector components

@ A Galilean vector \7 represented by a column V/, has a transformation
law V = P V/ where P is a Galilean linear transformation

@ The 4-velocity 7] represented by the column

-5-(1)-()

@ lts transformation law U = P U’ provides the velocity addition formula

v=u+ RV
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Galilean and Bargmannian transformations

Galilean vectors

A Galilean vector V of non-vanishing time component V? is the 4-flux of it

—

For instance, the 4-flux of mass is N = pU
Conservation of V0 is DivV = 0

Classification of Galilean vectors

t t
A timelike A timelike

1% lightlike

/ lightlike
LA

spacelike

Relativistic ¢ s 450 Classical
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Galilean and B nnian transformations

The fifth dimension...

FIGURE — 5D simulator (La Foux, Saint-Tropez)
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Galilean and Bargmannian transformations

Bargmannian transformations

e We consider a line bundle 7 : M — M of dimension 5 and a section :
FMaM: X X=F(X)

@ We built a group of affine transformations X’ — X = P X’ + C of RS
which are Galilean when acting onto the space-time hence of the

form :
A P 0
P~(an)

where P is Galilean, ® and a must have a physical meaning linked to
the energy

@ Thus we know that, under the action of a boost v and a rotation R,
the kinetic energy is transformed according to :

1 1 1
e:§m\|u+Rv' H2:§m||u||2+mu-(Rv’)—|—§m|| V2.
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Galilean and Bargmannian transformations

Bargmannian transformations

@ We claim that the fifth dimension is linked to the energy by :
€ 1 2 g T / /
dz=—dt== ||ul||dt' +u" Rdx + dz
m 2

that leads to consider the Bargmannian transformations of R> of
which the linear part is :

1 0 O
P = u R 0
% lul> u™R 1
Their set is the Bargmann’s group,
a Lie group of dimension 11,

introduced in quantum mechanics for cohomologic reasons
but which turns out very useful in Thermodynamics!
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Galilean and Bargmannian transformations

A fragance of symplectic geometry

e (U,w) symplectic manifold
G Lie group actingon by ar— a-¢

g* the dual of its Lie algebra g acting by Z+— Z-¢

o & pu=1(&) € g* is a momentum map (Souriau) if

VZeg, w(Z-&dE)=—dy(&)2)

e Theorem (Souriau)

There exists cocs : G — g* called a symplectic cocycle

such that cocs(a) = v(a- &) — Ad*(a) ¥(€)

@ modulo a coboundary cobs,,, = Ad*(a)uo — po, it defines
a class of symplectic cohomology [cocs] € H(G; g*),

generally null.

@ A noticeable exception is Galileo’s group
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Galilean and Bargmannian transformations

Bargman's group as central extension of Galileo's group

o The extension G = G x N with N Abelian is a group for
534 =(a,0)(d,0') = (ad',0 + 0 + coc (a,d))

if the N-cocycle coc verifies a cocycle identity
ensuring the associativity
@ one can define also a N-coboundary
coby (a,a') =0 (a)+0(a") — 0 (ad')
o Adjoint representation of G
Ad(A_l) (Z,Y)= (Ad( _1)Z Y + B(a)Z
with B(a): g = n: Z = Y = Dcoc(e 5) (Z,0) + Dcoc(,-1 4 (0, Za)

o Co-adjoint representation of G

Ad* (3) (1,€) = (Ad* (a) p + C(a) &, &)
with the transpose C(a) : n* — g* of B(a)
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Galilean and Bargmannian transformations

Bargman's group as central extension of Galileo's group

reminder :
B(a)Z = Dcoc(e,a) (Z,0) + Dcoc(,-1 5 (0, Za),  C(a) = *(B(a))

Correspondance :
If coc is a N-cocycle, a+— C(a)n is a symplectic cocycle
If cob is a N-coboundary, a — C(a)n is a symplectic coboundary

Construction : a group G with [cocs| # 0 being given, we find an
extension G of null symplectic cohomology by determining the
N-cocycle coc solution of the (non standard) PDS :

C(a)& = cocs (a)

Application : G = Galileo’s group, G=GxR= Bargmann's group
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Temperature 5-vector and friction tensor

Temperature 5-vector

@ The reciprocal temperature 3 =1/60 =1/ kgT is generalized as a
Bargmannian 5-vector :

B
w:(W>: w |
¢ ¢
o The transformation law W/ = P~1W leads to :
F=p. w=RT(w—pu), (=CwutD|ulf

@ Picking up u = w /3, we obtain the reduced form

A B
W' = 0
Cint

interpreted as the temperature vector of a volume element at rest
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Temperature 5-vector and friction tensor

Temperature 5-vector

" Reduce and boost” method :

Starting from the reduced form, we apply the Galilean transformation of
boost v, that gives :

(B 8
W=1[ w ,= Bv
C Cint+§ || v ”2

where ( is Planck’s potential or Massieu’s potential

(CLUEE R R EE NV IR Galilean Mechanics and Thermodynamics of SPIG 2020 Les Houches 17 /49



Temperature 5-vector and friction tensor

Friction tensor

Friction tensor

The friction tensor is a mixed 1-covariant and 1-contravariant tensor :
f=VW

represented by the 4 x 4 matrix f =V W

@ This object introduced by Souriau merges the temperature gradient
and the strain velocity

@ In dimension 5, we can also introduce
f=VW

represented by a 5 x 4 matrix

2 A f
RINEN
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Momentum tensor

Momentum tensor

Method
Taking care to walk up and down the
rough ground of the reality (Wittgenstein),

we want to work, in dimension 4 ou b5,
with tensors of which the transformation law
respects the physics

The meaning of the components is not given a priori but results, through
the transformation law, from the choice of the symmetry group
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Momentum tensor

Momentum tensor

Momentum tensor

Linear map from the tangent space to M at X = f (X) into the tangent
space to M at X , hence a mixed tensor T of rank 2

~

then a bundle map over the space-time 7 : #7*(TM) = TM

— | *\, I/i‘/
frm | I A
™
momentum T' ‘k X M ' X M
f
S ™

(LR LW R R RNV ST G alilean Mechanics and Thermodynamics of SPIG 2020 Les Houches 20/49



Momentum tensor

Momentum tensor

Momentum tensor

Linear map from the tangent space to M at X = f (X) into the tangent
space to M at X , hence a mixed tensor T of rank 2

o Galilean momentum tensors : represented by a 4 x 5 matrix of the

form :
H o —p" p
k o« p

where o, is a 3 X 3 symmetric matrix

@ In matrix form, the transformation law is :

T =

T=pTpP!

To reveal the physical meaning of the components. ...
Galilean Mechanics and Thermodynamics of
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Momentum tensor

Momentum tensor

. we let the symmetry group act!

@ The transformation law provides :

/

p=p, =R (p—pu), o.=R"(ox+up” +pu” —puu”)R

1
HW=H—up+llul’, K=RT(k=Hut+ou+3|ul’p)

@ which leads to the reduced form :

~ P €int 0 p
T_< H o 0)’

interpreted as the momentum of a volume element at rest
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Momentum tensor

Momentum tensor

" Reduce and boost” method : starting from the reduced form, we apply
a Galilean transformation law of boost v and rotation R and we interpret :

p as the density
p = pv as the linear momentum

o, =0 — pw ' as the dynamical stresses

H =p (et + 5 || v ||?) as the total energy
@ k=h+Hv — ov as the energy flux

with :
o the heat flux h=RH
e the statical stresses 0 = Ro’' R7
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Momentum tensor

Momentum tensor

Hence the boost method reveals the standard form of a
Galilean momentum tensor

Object structured into :

e density p,

@ linear momentum p,

@ Cauchy’s statical stresses o,

o heat flux 5,

e Hamiltonian (per volume unit) H
represented by the matrix :

H —pT p
7= P p 1
h+HE—0c= o—=ppl »p
pp p
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First and second principles

First principle

Momentum divergence
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First principle

In absence of gravity, we recover the balance equations of :
0 .
@ mass : a—i +div(pv)=0

@ linear momentum : p {g: + % v] = (div o),

° energy:aat[—kdiv (h+Hv—0ov)=0
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First and second principles

The matter and its motion

spacetime
(dim = 4)
<]
35
o3
o~
g
material /
(dim = 3) Xo,

particle

Its motion is described by a line bundle x : M — Mg : X — xo = k(X))
where

@ the particle xp is represented by its Lagrangian coordinates xp
e its trajectory is the fiber £~ 1(xo)
@ the position x of the event X gives its Eulerian coordinates at time t

o the deformation gradient is F = 2X
0
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First and second principles

First principle

if Planck’s potential ( is a function of :
- the temperature vector W,

- and the right Cauchy strain C = FTF,
then the 4 x 4 matrix

0 0
TR—UHR+<_O_RV UR)

with Mg = —p 31, or=—%F & FT is such that :
Q Tr= ( TR N ) with N = p U represents a momentum tensor Tr
o Tr (vavT/) —0

Lo a¢
J.TRW_<—8—WW)N

v

(LR LW R R RNV ST G alilean Mechanics and Thermodynamics of SPIG 2020 Les Houches 28/49



First principle

Planck’s potential ( is the prototype of thermodynamic potentials :

8<int

op

o the Galilean 4-vector S = 7A'R W is the 4-flux § = s N of
the specific entropy s = Cipe — 3~

op

Cint = —0 (ine allows to recover

o the internal energy ¢j,; = —

o the free energy ) = _B

0 0
e/nt—e w Q;Z)v *szaiig

The interest of ( is that it generates all the other ones

Geometrization : § = % = Qg - 3 becomes S = Tp W
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First and second principles

Second principle

Additive decomposition of the momentum tensor
T = -,l\_R + _,l\—/ with

@ the reversible part Tr represented by :

s Hr -pT p
R Hrv —orv or—vp' pv

o the irreversible one T represented by :

= H 0 0
= h+H;v—ov o 0

where o, are the dissipative stresses and H; = —pgq is the
dissipative part of the energy due to the irreversible heat sources g,
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First and second principles

Second principle

Linear form 7 = dt represented by an invariant row under Galilean trans-

formation :
T:(]. 0 0 0)

Covariant form of the second principle

The local production of entropy of a medium caracterized by a tempera-

ture vector W and a momentum tensor T is non negative :
® = Div (f vT/) - (T(f(U))) (T(T,(U))) >0

and vanishes if and only if the process is reversible
[de Saxcé & Vallée IJES 2012]
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First and second principles

Second principle

@ The local production of entropy

o =Div (T W) - (+(F(0)) (r(T(0))

is a Galilean invariant!

@ After some manipulations, it can be putted in the classical form of
Clausius-Duhem inequality
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Thermodynamics and Galilean gravitation

Galilean coordinates

A necessary and sufficient condition for the Jacobian matrix P = dX of a
coordinate change X +— X’ being a linear Galilean transformation is that

this change is compound of a rigid motion and a clock change :

X = (R (x—x (1), f=t+mn

@ The coordinate systems that are deduced one from each other by
such changes are called Galilean coordinate systems.

@ G being the group of linear Galilean transformations, this theorem
shows that the G-structure [Kobayashi 1963] is integrable
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Thermodynamics and Galilean gravitation

Galilean gravitation

The Galilean connexions, that is the symmetric connections of which the
matrix [ belongs to the Lie algebra of Galileo’s group, are such that :

0 0
r{dx) = ( Q x dx — g dt j(Q)dt) ’

where j(€) is the unique skew-symmetric matrix such that j(Q)v = Q x v

v

@ g is the classical gravity

o Q is a new object called spinning
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Thermodynamics and Galilean gravitation

Equation of motion of a particle

@ T = mU being the linear 4-momentum, the covariant equation of
motion reads [Elie Cartan 1923]:

VT =dT +T(dX) T =0
or in tensor notations
VT =dT* +T53dX TP =0

@ In the Galilean coordinate systems, its general form is

]m:q p:m@—zﬂxn\

[Souriau, Structure des systémes dynamiques, 1970]

o It allows to explain simply the motion of Foucault's pendulum without
neglecting the centripetal force as in the classical textbook

(LR LW R R BNV ST Galilean Mechanics and Thermodynamics of SPIG 2020 Les Houches 35/49



Thermodynamics and Galilean gravitation

Thermodynamics and Galilean gravitation

The down side of the cards ...

o Galileo's group does not preserve space-time metrics

@ Bargmann's group preserves the metrics ds? =|| dx ||> —2 dz dt, then
the space M is a riemannian manifold and, in this case, the
G-structure is not in general integrable, the obstruction being the
curvature.

@ In other words, we are going to work, up to now, in linear frames
which are not associated to local coordinates (moving frames)

@ Hence we have to find frames associated to coordinate systems
(natural frames)
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Thermodynamics and Galilean gravitation

Thermodynamics and Galilean gravitation

@ With the potentials of the Galilean gravitation ¢, A such that
0 1
g = —grad o incurl

the Lagrangian is L(t,x,v) = sm | v[?—-mo+mA-v
@ that suggests to introduce a coordinate change

dz':%dt:dz— dt +A-dx, dt' =dt, dx' =dx

@ In the new coordinates, the Bargmannian connection is

0 0 0
J(Q)dx — g dt J(Q2) dt 0
[(dX) = 5
<8t —A-g) dt [(grad o — Q2 x A) dt 0
+(grad o — Q x A) - dx —grads/ dx]T
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Thermodynamics and Galilean gravitation

Thermodynamics and Galilean gravitation

The developments are similar to the ones in absence of gravitation but
with some exceptions :

@ Planck’s potential becomes ¢ = (jnt —i—g |v|?-Bo+A w
o the Hamiltonian becomes H = p (ein: + 2 || v |2 +0 —q/) |

o the linear momentum becomes p = p (v + A).

In presence of gravitation, the first principle restitutes the balance
equations of the mass and of

d
@ the linear momentum : p d—‘; =(divo) +p(g—2Qx%x V)

° theenergy:g}:-i-diV (h"‘fHV_UV):p(gt_?)t'V)
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A smidgen of relativistic Thermodynamics

A smidgen of relativistic Thermodynamics

@ We come back to the relativistic model with Lorentz-Poincaré
symmetry group

@ In this approach, the temperature is transformed according to

vl||2
0 =0=0,/1-1

o c
This the temperature contraction !

@ thanks to Minkowski's space-time metrics ds® = c2dt?>— || dx ||?, we
can associate to the 4-velocity U a single linear form U* represented

by
2
T T cc 0 2 1 T
U Gz(’wv ) <0 _1R3>:c <%—62’yv ) :

which approaches ¢®T when ¢ approaches 400
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A smidgen of relativistic Thermodynamics

A smidgen of relativistic Thermodynamics

By an epistemological reversal, we replace the clock-form 7 by U*/ c? in
the Galilean expression of the 2" principle, that lead to

Relativistic form of the 2" principle

The local productlon of entropy of a medium characterized by a tempe-
rature vector W, a momentum tensor T, a potential ¢ and a 4-flux of mass
N is non negative :

® = Div (TW+<A7) —é (u*(f(U))) % (u*(r,(U))) >0,

and vanishes if and only if the process is reversible
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A smidgen of relativistic Thermodynamics

Thank you!
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A smidgen of relativistic Thermodynamics

@ !dea debate

© Galilean and Bargmannian transformations
© Temperature 5-vector and friction tensor
@ Momentum tensor

© First and second principles

@ Thermodynamics and Galilean gravitation

@ A smidgen of relativistic Thermodynamics
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A smidgen of relativistic Thermodynamics

Lie group statistical mechanics

In Structure des systémes dynamiques (1970), Souriau proposed a
statistical mechanics model using geometric tools

@ Let d\ be a measure on the orbit orb (1), identified to p, and a Gibbs
probability measure p d\ with p = e O = g=(ztn2)

@ The normalization condition | pd/\ =1 links the components by

orb(p.)

z(Z) = In/ e "2 d)
orb(p)

@ The corresponding entropy and mean momenta are :

orb(p) orb(p) 0z
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Bridging the gap between both theories :

@ Souriau’s Lie group statistical mechanics

@ Souriau’s thermodynamics of continua
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A smidgen of relativistic Thermodynamics

Bridging the gap between both theories (1/5)

o Step 1 : parameterizing the orbit. Galileo's group is the set of
affine transformations t = t' + 719, x = Rx' + ut' + k where u is the
Galilean boost

The infinitesimal action Z - X is 0t = 79, 0x = dww X x + dut + bk

The dualing pairing is
uwZ=I1-dow—q-du+p-dk—edn

where [ is the angular momentum, g the passage, p the linear
momentum and e the energy

In the dual space g* of dimension 10, the generic orbits are
submanifolds parameterized by (g, p, n) € R® x R3 x S? where

n=1/"1]
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A smidgen of relativistic Thermodynamics

Bridging the gap between both theories (2/5)

@ Step 2 : modelling the deformation. We consider N identical
spinless particles in a box of volume V representing the elementary
volume of the continuum thermodynamics

For a coordinate change t = t/, x = ¢(t’,s’), the Jacobian matrix is

oX 10

ox ~ "= < v F >

If the box of initial volume Vj is at rest (v = 0) and the deformation
gradient F is uniform in the box, d\ is preserved

Replacing the orbit by the subset Vy x R3 x S? and integrating gives

1
z=3 In(det(C)) —g Ing3+ C*
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A smidgen of relativistic Thermodynamics

Bridging the gap between both theories (3/5 and 4/5)

o Step 3 : boost method. A new coordinate system f( in which the
box has the velocity v can be deduced from X = P X + C by
applying a boost u = —v. Leaving out the bars, we have

1 3 e
z:iln(det(C))—flnBJr—B||W||2 +C™ .

o Step 4 : identification. Theorem
The transformation law of the temperature vector W = (3, w) and
Planck’s potential  is the same as the one of the components z, 7
of the affine map ® through the identification

Z:(—W,O), Z:mC
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A smidgen of relativistic Thermodynamics

Bridging the gap between both theories (5/5)

@ Step 5 : from Planck’s potential

z 1
== = — In(det ——I 2 4Cte
(=2 = (et ) — 5o B+ o WP

we deduce the linear 4-momentum N = (4, —p") and Cauchy’s
stresses

3keT 1

H:p 77—1_7”‘/”2 ) p=pv, J:_q1R3
2 m 2

where we recover the ideal gas law g = % kg T = % kg T
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A smidgen of relativistic Thermodynamics

Thank you!
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