Wrapped statistical models on $SE(n)$: motivation challenges and generalization to symmetrical spaces

Emmanuel Chevallier1, Nicolas Guigui2

1 Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, Marseille, France; 2 Université Côte d’Azur, Inria Epione, Sophia Antipolis, France; SPIGL, July 2020

1. Random variables on $SE(n)$

- X_1, \ldots, X_k i.i.d. R.V. $\Omega \rightarrow SE(n)$
- Goal: estimate the law from a set of samples X_1, \ldots, X_k using a parametric model

Since $SE(n)$ has a bi-invariant Haar measure $d\nu$, we assume that the law of the X_i has a density f according to this measure.

2. Some classical probability densities on manifolds

(I) Heat kernels: Greens function of the heat equation $\frac{\partial f}{\partial \tau} = \Delta f$.
- Key ingredient: a Laplacian.

(II) If h is a probability density on \mathbb{R}^d depending on a Euclidean norm $\| \cdot \|$, define $f_\alpha(x)(d\nu) = \alpha h(\| \log_\alpha x \|) d\nu$ with $\alpha = \frac{1}{\int_M h(\| \log_\alpha x \|) d\nu}$.
- Key ingredients: a log map and a Euclidean distance in each tangent space.

(III) Wrapped distributions are defined by mapping a density h on a tangent space $T_x M$ to the manifold using the exponential map: $f_\alpha(x) = (\exp \circ h)(x) = \frac{h(x)}{J_\alpha(x)}$ where J_α is the Jacobian determinant of the exponential map \exp.

3. Important characteristics of densities

- Expression of the density
 - (I) Heat kernels rarely admit explicit expressions on curved spaces.
 - (II) Can we compute the normalizing constant? Usually with Monte Carlo sampling.
 - (III) Can we compute the Jacobian J_α?

- Moments
 - $\mathbb{E}[X]$ (Frechet means on Riemannian manifolds, bi-invariant means on Lie groups) are solution of
 \[\int_M \log_\alpha(x) d\nu = E(\log_\alpha(x)) = 0 \]
 - When the mean is unique, we define the covariance as the vectorial covariance in the tangent space at the mean:
 \[\Sigma = E(\log_\alpha(x) \otimes \log_\alpha(x)) \]
 - Given the density, can we easily obtain moments and vice-versa? (II) usually no / (III) if J_α is known then yes.
 - Given a statistical model of density are there estimators easily computable?

4. Probability densities on $SE(n)$

- We want to work with bi-invariant quantities: if the samples X_i are composed with a rigid motion, we want the estimated law to be composed with the same motion.
- On Lie groups exponential map is equivariant under group multiplications and can hence be used to construct suitable probability densities.

As a manifold $SE(n)$ is a product between $SO(n)$ and \mathbb{R}^n but the group structure is a semi-direct product:

\[SE(n) = SO(n) \ltimes \mathbb{R}^n \]

and elements of its Lie algebra are parametrized by couples (A, T) where A is a skew-symmetric matrix and $T \in \mathbb{R}^n$. The differential of the exponential map on Lie groups at u in the Lie algebra is given by the following formula:

\[d\exp_u = d\exp_u \circ \left(\sum_{k \geq 2} \frac{(-1)^k}{(k+1)!} a_d^k \right) \]

which enables to compute the Jacobian determinant J_α:

\[J_\alpha = \det(d\exp_u) = \left(\prod_{i=0}^{n-1} 1 - \cos(\theta_i) \theta_i^\alpha \right) \times \ldots \times \left(\prod_{1 \leq i < j} \frac{1 + \cos(\theta_i + \theta_j)}{\theta_i + \theta_j} \frac{1 + \cos(\theta_i - \theta_j)}{\theta_i - \theta_j} \right) \]

where $\alpha = 1$ when n is even and 2 when n is odd and θ_i are the angles of the planar rotations of the block diagonalization of A. This simplifies to $J_\alpha(T) = \left(\frac{2^{\frac{n-1}{2}} \cos(\theta_1)}{\|\theta\|^2} \right)$ on $SE(2)$.

Given a kernel K on we can define probability distribution of type (III):

\[f_{g,\Sigma}(\exp K(u)) = \frac{1}{J(u)/\sqrt{\det(\Sigma)}} K(\sqrt{\Sigma}^{-1}u) \]

If Σ is sufficiently concentrated, g and Σ are the moments of $f_{g,\Sigma}$.

5. Density estimation on $SE(n)$

- Maximum likelihood estimator: no explicit expressions.
- Moment matching estimator: straightforward.

No law of large number or CLT on Lie groups \rightarrow it is difficult to characterize convergence rates of moments \rightarrow empirical comparison with the Euclidean case.

6. Generalization to symmetric spaces

- Can we find a natural definition of the logarithm?
- The Jacobian along a geodesic γ follows a second order differential equation
 \[J(t) = \det(A(t)) \]
 \[A^\prime(t) + R(t)A(t) = 0 \]
 where
 \[R(t) = R(\cdot, \gamma(t))\gamma(t) \]
 and R is the curvature tensor of the connection. Since $\nabla R = 0$ on symmetric spaces J should have an explicit expression.