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1. Random variables on SE(n)

I X1, ..,Xk i.i.d. R.V. Ω→ SE(n)

I Goal: estimate the law from a set of samples x1, ..xk using a parametric
model

Since SE(n) has a bi-invariant Haar measure dv we assume that the law
of the Xi has a density f according to this measure.

2. Some classical probability densities on manifolds

(I) Heat kernels : Greens function of the heat equation ∂f
∂f = ∆f

� key ingredient : a Laplacian

(II) If h is a probability density on Rd depending on a Euclidean norm ‖.‖,
define

fx̄(x)dv = αh(‖logx̄x‖)dv
with

α =
1∫

M h(‖logx̄x‖)dv
� key ingredients: a log map and a Euclidean distance in each tangent
spaces

(III) wrapped distributions are defined by mapping a density h on a tangent
space Tx̄M to the manifold using the exponential map:

fx̄(x) = (expx̄ ∗h)(x) =
h(x)

Jx̄(x)

where J is the Jacobian determinant of the exponential

� key ingredients : log and exp maps

3. Important characteristics of densities

I Expression of the density

(I) Heat kernels rarely admit explicit expressions on curved spaces

(II) Can we compute the normalizing constant? Usually with Monte Carlo
smapling

(III) Can we compute the Jacobian J?

I Moments

. Means x̄ (Frechet means on Riemannian manifolds, bi-invariant means
on Lie groups) are solution of∫

M
logx̄(x)dv = E (logx̄(x)) = 0

. When the mean is unique, we define the covariance as the vectorial
covariance in the tangent space at the mean:

Σ = E (logx̄(x)⊗ logx̄(x))

Given the density, can we easily obtain moments and vice-versa? (II)
usually no / (III) if J is known then yes

I Given a statistical model of density are there estimators easily computable?

4. Probability densities on SE(n)

I We want to work with bi-invariant quantities: if the samples xi are
composed with a rigid motion, we want the estimated law to be composed
with the same motion.

I On Lie groups exponential map is equivariant under group multiplications
and can hence be used to construct suitable probability densities.

As a manifold SE(n) is a product between SO(n) and Rn but the group
structure is a semi-direct product:

SE(n) = SO(n) n Rn

(R, t)(R ′, t′) = (RR ′,Rt′ + t)

and elements of its Lie algebra are parametrized by couples (A,T ) where
A is a skew-symmetric matrix and T ∈ Rn. The differential of the
exponential map on Lie groups at u in the Lie algebra is given by the
following formula:

d expu = dLexpu
◦

∑
k≥0

(−1)k

(k + 1)!
adk

u


which enables to compute the Jacobian determinant J:

J = det(d expu) =

(∏
i

2
1− cos(θi)

θ2
i

)α
× ..

..
∏
i<j

(
4.

1 + cos(θi + θj)

(θi + θj)2
.
1 + cos(θi − θj)

(θi − θj)2

)

where α = 1 when n is even and 2 when n is odd and θi are the angles
of the planar rotations of the block diagonalization of A. This simplifies to

J(θ,T ) =
∣∣∣21−cos(θ)

θ2

∣∣∣ on SE(2).

Given a kernel K on we can define probability distribution of type (III):

fg ,Σ(expg(u)) =
1

J(u)
√

det(Σ)
K
(√

utΣ−1u
)

If Σ is sufficiently concentrated, g and Σ are the moments of fg ,Σ.

5. Density estimation on SE(n)

I Maximum likelihood estimator: no explicit expressions

I moment matching estimator: straightforward

No law of larges number or CLT on Lie groups→ it is difficult to
characterize convergence rates of moments→ empirical comparison with
the Euclidean case:

Figure: L1 errors and their ratios on SE(2) and TeSE(2) ∼ R3 for an anisotropic
covariance Σ.

7. Generalization to symmetric spaces

I Can we find a natural definition of the logarithm?

I The Jacobian along a geodesic γ follows a second order differential
equation

J(t) = det(A(t))

A′′(t) + R(t)A(t) = 0

where
R(t)(.) = R(., γ′(t))γ′(t)

and R is the curvature tensor of the connection. Since ∇R = 0 on
symmetric spaces J should have an explicit expression.
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