
1

Learning with Few Labeled Data

Pratik Chaudhari

Electrical and Systems Engineering &

Computer and Information Science

University of Pennsylvania

2

Menu

– An introduction

– Few-shot image classification

– Fundamental limits of representation learning

3

An introduction

θ∗ = argmin
θ

1

N

N∑
i=1

fi (θ)

In practice, Stochastic Gradient Descent (SGD) works extremely well

θt+1 = θt −
η

b

b∑
k=1

∇ fωk
(θt)

ωk ∈ {1, . . . ,N}

3

An introduction

θ∗ = argmin
θ

1

N

N∑
i=1

fi (θ)

In practice, Stochastic Gradient Descent (SGD) works extremely well

θt+1 = θt −
η

b

b∑
k=1

∇ fωk
(θt)

ωk ∈ {1, . . . ,N}

3

An introduction

θ∗ = argmin
θ

1

N

N∑
i=1

fi (θ)

In practice, Stochastic Gradient Descent (SGD) works extremely well

θt+1 = θt −
η

b

b∑
k=1

∇ fωk
(θt)

ωk ∈ {1, . . . ,N}

3

An introduction

θ∗ = argmin
θ

1

N

N∑
i=1

fi (θ)

In practice, Stochastic Gradient Descent (SGD) works extremely well

θt+1 = θt −
η

b

b∑
k=1

∇ fωk
(θt)

ωk ∈ {1, . . . ,N}

4

5

SGD finds “wide minima”

Local Entropy [Chaudhari et al., ICLR17] is a modified loss function for

training deep networks

fγ(θ) = − log(Gγ ∗ e−f (θ))

5

SGD finds “wide minima”

Local Entropy [Chaudhari et al., ICLR17] is a modified loss function for

training deep networks

fγ(θ) = − log(Gγ ∗ e−f (θ))

6

Parle: parallelizing stochastic gradient descent

Couple MCMC and distributed updates to get state-of-the-art

performance [Chaudhari et al., SysML18]

0 100 200 300 400
wall-clock time (min)

3

6

9

12

15

to
p1

 e
rr

or
 (%

)

3.77 3.24

4.38
4.234.29

WRN-28-10: CIFAR-10

Parle (n=3)
Parle (n=8)
Elastic-SGD (n=3)
Entropy-SGD
SGD

0 10 20 30 40 50
wall-clock time (min)

5

8

11

14

to
p1

 e
rr

or
 (%

)

6.08

6.8

6.15

All-CNN: CIFAR-10 (25% data)

Parle (n=6)
Elastic-SGD (n=6)
SGD (full)

6

Parle: parallelizing stochastic gradient descent

Couple MCMC and distributed updates to get state-of-the-art

performance [Chaudhari et al., SysML18]

0 100 200 300 400
wall-clock time (min)

3

6

9

12

15

to
p1

 e
rr

or
 (%

)

3.77 3.24

4.38
4.234.29

WRN-28-10: CIFAR-10

Parle (n=3)
Parle (n=8)
Elastic-SGD (n=3)
Entropy-SGD
SGD

0 10 20 30 40 50
wall-clock time (min)

5

8

11

14

to
p1

 e
rr

or
 (%

)
6.08

6.8

6.15

All-CNN: CIFAR-10 (25% data)

Parle (n=6)
Elastic-SGD (n=6)
SGD (full)

7

Diving deeper with statistical physics

A continuous-time analysis shows that SGD has a non-equilibrium

steady-state distribution [Chaudhari & Soatto, ICLR 2018]

The posterior distribution of SGD maintains a balance between energy

and entropy

ρss = argmin
ρ

E
θ∼ρ

[Φ(θ)]− β−1H(ρ)

Noise in SGD is highly

non-isotropic

7

Diving deeper with statistical physics

A continuous-time analysis shows that SGD has a non-equilibrium

steady-state distribution [Chaudhari & Soatto, ICLR 2018]

The posterior distribution of SGD maintains a balance between energy

and entropy

ρss = argmin
ρ

E
θ∼ρ

[Φ(θ)]− β−1H(ρ)

Noise in SGD is highly

non-isotropic

7

Diving deeper with statistical physics

A continuous-time analysis shows that SGD has a non-equilibrium

steady-state distribution [Chaudhari & Soatto, ICLR 2018]

The posterior distribution of SGD maintains a balance between energy

and entropy

ρss = argmin
ρ

E
θ∼ρ

[Φ(θ)]− β−1H(ρ)

Noise in SGD is highly

non-isotropic

8

Knots in our understanding

9

Menu

– An introduction

– Few-shot image classification

– Fundamental limits of representation learning

10

Three regimes of image classification

High-shot regime

100–1000 samples/class

Low-shot regime

10 samples/class

Extreme low-shot regime (anomaly

detection)

1 sample/class

10

Three regimes of image classification

High-shot regime

100–1000 samples/class

Low-shot regime

10 samples/class

Extreme low-shot regime (anomaly

detection)

1 sample/class

10

Three regimes of image classification

High-shot regime

100–1000 samples/class

Low-shot regime

10 samples/class

Extreme low-shot regime (anomaly

detection)

1 sample/class

11

Problem formulation

Training set consists of labeled samples from lots of “tasks”, e.g.,

classifying cars, cats, dogs, planes . . .

Data from the new task, e.g., classifying strawberries has

w “ways”: number of classes,

s “shots”: number of labeled samples per class.

Few-shot setting considers the case when s is small.

11

Problem formulation

Training set consists of labeled samples from lots of “tasks”, e.g.,

classifying cars, cats, dogs, planes . . .

Data from the new task, e.g., classifying strawberries has

w “ways”: number of classes,

s “shots”: number of labeled samples per class.

Few-shot setting considers the case when s is small.

11

Problem formulation

Training set consists of labeled samples from lots of “tasks”, e.g.,

classifying cars, cats, dogs, planes . . .

Data from the new task, e.g., classifying strawberries has

w “ways”: number of classes,

s “shots”: number of labeled samples per class.

Few-shot setting considers the case when s is small.

12

A flavor of current few-shot algorithms

Prototypical Networks [Snell et al., 2017]

– Collect a meta-training set, this consists of a large number of

related tasks

– Train one model on all these tasks to ensure that the clustering of

features of this model correctly classifies the task

– If the test task comes from the same distribution as the meta-training

tasks, we can use the clustering on the new task to classify new classes

13

The key idea

A classifier trained on a dataset Ds is a function F that classifies data x

using

ŷ = F (x ; Ds).

The parameters θ∗ = θ(Ds) of the classifier are a statistic of the dataset

Ds obtained after training. Maintaining this statistic avoids having to

search over functions F at inference time.

We cannot learn a good (sufficient) statistic using few samples. So we

will search over functions at test-time more explicitly

ŷ = argmin
yNs+1

min
θ

1

Ns + 1

Ns+1∑
i=1

− log pθ(yi | xi) +
1

2λ
‖θ − θ∗(Ds)‖2

.

13

The key idea

A classifier trained on a dataset Ds is a function F that classifies data x

using

ŷ = F (x ; Ds).

The parameters θ∗ = θ(Ds) of the classifier are a statistic of the dataset

Ds obtained after training. Maintaining this statistic avoids having to

search over functions F at inference time.

We cannot learn a good (sufficient) statistic using few samples. So we

will search over functions at test-time more explicitly

ŷ = argmin
yNs+1

min
θ

1

Ns + 1

Ns+1∑
i=1

− log pθ(yi | xi) +
1

2λ
‖θ − θ∗(Ds)‖2

.

13

The key idea

A classifier trained on a dataset Ds is a function F that classifies data x

using

ŷ = F (x ; Ds).

The parameters θ∗ = θ(Ds) of the classifier are a statistic of the dataset

Ds obtained after training. Maintaining this statistic avoids having to

search over functions F at inference time.

We cannot learn a good (sufficient) statistic using few samples. So we

will search over functions at test-time more explicitly

ŷ = argmin
yNs+1

min
θ

1

Ns + 1

Ns+1∑
i=1

− log pθ(yi | xi) +
1

2λ
‖θ − θ∗(Ds)‖2

.

14

Transductive Learning

15

A very simple baseline

1. Train a large deep network on the meta-training dataset with the

standard classification loss

2. Initialize a new “classifier head” on top of the logits to handle new

classes

3. Fine-tune with the few labeled data from the new task

4. Perform transductive learning using the unlabeled test data

with a few practical tricks like cosine annealing of step-sizes,

mixup regularization, 16-bit training, very heavy data augmentation, and label

smoothing cross-entropy

15

A very simple baseline

1. Train a large deep network on the meta-training dataset with the

standard classification loss

2. Initialize a new “classifier head” on top of the logits to handle new

classes

3. Fine-tune with the few labeled data from the new task

4. Perform transductive learning using the unlabeled test data

with a few practical tricks like cosine annealing of step-sizes,

mixup regularization, 16-bit training, very heavy data augmentation, and label

smoothing cross-entropy

16

An example

17

Results on benchmark datasets

18

The ImageNet-21k dataset

0 5000 10000 15000 20000
classes

10
0

10
1

10
2

10
3

im
ag

es
 p

er
 c

la
ss

1-shot, 5-way accuracies are as high as 89%, 1-shot 20-way

accuracies are about 70%.

19

Menu

– An introduction

– Few-shot image classification

– Fundamental limits of representation learning

20

Information Bottleneck Principle

A generalization of rate-distortion theory for learning representations of

data [Tishby et al., 2000]

X → Z → Y

Z is a representation of the data X . We want

– Z to be sufficient to predict the target Y , and

– Z to be small in size, e.g., few number of bits.

min
Z |X , Y |Z

{I (X ;Z)− I (Z ;Y)}.

Doing well on one task requires throwing away nuisance information

[Achille & Soatto, 2017].

20

Information Bottleneck Principle

A generalization of rate-distortion theory for learning representations of

data [Tishby et al., 2000]

X → Z → Y

Z is a representation of the data X . We want

– Z to be sufficient to predict the target Y , and

– Z to be small in size, e.g., few number of bits.

min
Z |X , Y |Z

{I (X ;Z)− I (Z ;Y)}.

Doing well on one task requires throwing away nuisance information

[Achille & Soatto, 2017].

21

The key idea

The IB Lagrangian simply minimizes I (X ;Z), it does not let us measure

what was thrown away.

Choose a canonical task to measure discarded information. Setting

Y := X ,

i.e., reconstruction of data, gives a special task. It is the superset of all

tasks and forces the model to learn lossless representations.

The architecture we will focus on is

X Z Y

X̂

Encoder eθ(z|x) Classifier cθ(y |z)

Decoder dθ(x|z)

21

The key idea

The IB Lagrangian simply minimizes I (X ;Z), it does not let us measure

what was thrown away.

Choose a canonical task to measure discarded information. Setting

Y := X ,

i.e., reconstruction of data, gives a special task. It is the superset of all

tasks and forces the model to learn lossless representations.

The architecture we will focus on is

X Z Y

X̂

Encoder eθ(z|x) Classifier cθ(y |z)

Decoder dθ(x|z)

21

The key idea

The IB Lagrangian simply minimizes I (X ;Z), it does not let us measure

what was thrown away.

Choose a canonical task to measure discarded information. Setting

Y := X ,

i.e., reconstruction of data, gives a special task. It is the superset of all

tasks and forces the model to learn lossless representations.

The architecture we will focus on is

X Z Y

X̂

Encoder eθ(z|x) Classifier cθ(y |z)

Decoder dθ(x|z)

22

An auto-encoder

Distortion D measures the quality of reconstruction

D = E
x∼p(x)

[
−
∫

dz e(z |x) log d(x |z)
]
.

Rate R measures the average excess bits used to encode the

representation

R = E
x∼p(x)

[∫
dz e(z |x) log

e(z |x)

m(z)

]
.

23

Rate-Distortion curve

The Lagrangian

F (λ) = min
eθ(z|x),mθ(z),dθ(x|z)

{R + λD}.

is a relaxation of the fact that given a variational family and data there is

an optimal value R = func(D) (that best sandwiches the inequality

H − D ≤ I (X ;Z) ≤ R).

23

Rate-Distortion curve

The Lagrangian

F (λ) = min
eθ(z|x),mθ(z),dθ(x|z)

{R + λD}.

is a relaxation of the fact that given a variational family and data there is

an optimal value R = func(D) (that best sandwiches the inequality

H − D ≤ I (X ;Z) ≤ R).

24

Rate-Distortion-Classification (RDC) surface

Let us extend the Lagrangian to

F (λ, γ) = min
eθ(z|x),mθ(z),dθ(x|z)

{R + λD + γC}

where the classification loss is

C = E
x∼p(x),y∼p(y |x)

[
−
∫

dz e(z |x) log c(y |z)
]

Can also include other quantities like the entropy S of the model

parameters

S = E
x∼p(x), y∼p(y |x)

[
log

p(θ|{x , y})
m(θ)

]

24

Rate-Distortion-Classification (RDC) surface

Let us extend the Lagrangian to

F (λ, γ) = min
eθ(z|x),mθ(z),dθ(x|z)

{R + λD + γC}

where the classification loss is

C = E
x∼p(x),y∼p(y |x)

[
−
∫

dz e(z |x) log c(y |z)
]

Can also include other quantities like the entropy S of the model

parameters

S = E
x∼p(x), y∼p(y |x)

[
log

p(θ|{x , y})
m(θ)

]

25

Rate-Distortion-Classification (RDC) surface

The existence of a convex surface func(R,D,C , S) = 0 tying together these

functionals allows a formal connection to thermodynamics [Alemi & Fischer

2018]

dR = −λ dD − γ dC − σ dS .

Just like energy is conserved in physical processes, information is conserved in

the model, either it is in the encoder-classifier pair or it is in the decoder.

26

Equilibrium surface of optimal free-energy

The RDC surface determines all possible representations that can be

learnt from given data. Can solve the variational problem for F (λ, γ) to

get

Zθ,x =

∫
dz mθ(z) dθ(x |z)λ cθ(yx |z)γ

and

F (λ, γ) = min
θ∈Θ
〈− logZθ,x〉x∼p(x) := J(θ, λ, γ)

The surface depends on data p(x , y).

26

Equilibrium surface of optimal free-energy

The RDC surface determines all possible representations that can be

learnt from given data. Can solve the variational problem for F (λ, γ) to

get

Zθ,x =

∫
dz mθ(z) dθ(x |z)λ cθ(yx |z)γ

and

F (λ, γ) = min
θ∈Θ
〈− logZθ,x〉x∼p(x) := J(θ, λ, γ)

The surface depends on data p(x , y).

27

An iso-classification loss process

A quasi-static process happens slowly enough for the system to remain in

equilibrium with its surroundings, e.g., reversible expansion of an ideal

gas.

We will create a quasi-static process to travel on the RDC surface. This

constraint is

∇θ J(θ, λ, γ) = 0 for all θ ∈ Θλ,γ .

e.g., if we want classification loss to be constant in time, we need

d

dt
∇θ J = 0 (Quasi-Static Condition)

d

dt
C = 0 (Iso-classification Condition).

Can also impose other constraints, e.g.,

d

dt
{C + γ−1R} = 0

which is the objective for learning Bayesian neural networks.

27

An iso-classification loss process

A quasi-static process happens slowly enough for the system to remain in

equilibrium with its surroundings, e.g., reversible expansion of an ideal

gas.

We will create a quasi-static process to travel on the RDC surface. This

constraint is

∇θ J(θ, λ, γ) = 0 for all θ ∈ Θλ,γ .

e.g., if we want classification loss to be constant in time, we need

d

dt
∇θ J = 0 (Quasi-Static Condition)

d

dt
C = 0 (Iso-classification Condition).

Can also impose other constraints, e.g.,

d

dt
{C + γ−1R} = 0

which is the objective for learning Bayesian neural networks.

27

An iso-classification loss process

A quasi-static process happens slowly enough for the system to remain in

equilibrium with its surroundings, e.g., reversible expansion of an ideal

gas.

We will create a quasi-static process to travel on the RDC surface. This

constraint is

∇θ J(θ, λ, γ) = 0 for all θ ∈ Θλ,γ .

e.g., if we want classification loss to be constant in time, we need

d

dt
∇θ J = 0 (Quasi-Static Condition)

d

dt
C = 0 (Iso-classification Condition).

Can also impose other constraints, e.g.,

d

dt
{C + γ−1R} = 0

which is the objective for learning Bayesian neural networks.

27

An iso-classification loss process

A quasi-static process happens slowly enough for the system to remain in

equilibrium with its surroundings, e.g., reversible expansion of an ideal

gas.

We will create a quasi-static process to travel on the RDC surface. This

constraint is

∇θ J(θ, λ, γ) = 0 for all θ ∈ Θλ,γ .

e.g., if we want classification loss to be constant in time, we need

d

dt
∇θ J = 0 (Quasi-Static Condition)

d

dt
C = 0 (Iso-classification Condition).

Can also impose other constraints, e.g.,

d

dt
{C + γ−1R} = 0

which is the objective for learning Bayesian neural networks.

28

Implementing processes on the RDC surface

Could pick particular values of (λ̇, γ̇) to get

0 =
d

dt
∇θ J = ∇2

θ J θ̇ + λ̇
∂

∂λ
∇θ J + γ̇

∂

∂γ
∇θ J

this requires inverting ∇2
θ J.

We exploit constraints like 0 = Cλλ̇+ Cγ γ̇ to get

λ̇ = −α ∂

∂γ
C = −α ∂2

∂γ2
F

γ̇ = α
∂

∂λ
C = α

∂2

∂λ∂γ
F

28

Implementing processes on the RDC surface

Could pick particular values of (λ̇, γ̇) to get

0 =
d

dt
∇θ J = ∇2

θ J θ̇ + λ̇
∂

∂λ
∇θ J + γ̇

∂

∂γ
∇θ J

this requires inverting ∇2
θ J.

We exploit constraints like 0 = Cλλ̇+ Cγ γ̇ to get

λ̇ = −α ∂

∂γ
C = −α ∂2

∂γ2
F

γ̇ = α
∂

∂λ
C = α

∂2

∂λ∂γ
F

29

Iso-C process for different initial (λ, γ): CIFAR-10

20 25 30
Rate

50

55

60

65

70

Di
st

or
tio

n

(0.5, 5)
(0.5, 10)
(0.5, 15)
(0.5, 20)

0.50 0.75 1.00 1.25
Lambda

0

10

20

30

40

50

Ga
m

m
a

(0.5, 5)
(0.5, 10)
(0.5, 15)
(0.5, 20)

30

Transferring to new tasks

The RDC surface depends on data p(x , y). We now move the data

distribution from the source task to the target task, e.g., interpolate it as

p(x , y , t) = (1− t) ps(x , y) + t pt(x , y).

Can also interpolate data using

p(x , t) = argminp (1− t)W 2
2 (ps , p) + tW 2

2 (p, pt) and solve the discrete optimal

transport problem.

The quasi-static iso-classification process

0 =
d

dt
∇θ J =

d

dt
C

can be executed on this changing data distribution.

This is a completely controlled mechanism to transfer representations.

30

Transferring to new tasks

The RDC surface depends on data p(x , y). We now move the data

distribution from the source task to the target task, e.g., interpolate it as

p(x , y , t) = (1− t) ps(x , y) + t pt(x , y).

Can also interpolate data using

p(x , t) = argminp (1− t)W 2
2 (ps , p) + tW 2

2 (p, pt) and solve the discrete optimal

transport problem.

The quasi-static iso-classification process

0 =
d

dt
∇θ J =

d

dt
C

can be executed on this changing data distribution.

This is a completely controlled mechanism to transfer representations.

30

Transferring to new tasks

The RDC surface depends on data p(x , y). We now move the data

distribution from the source task to the target task, e.g., interpolate it as

p(x , y , t) = (1− t) ps(x , y) + t pt(x , y).

Can also interpolate data using

p(x , t) = argminp (1− t)W 2
2 (ps , p) + tW 2

2 (p, pt) and solve the discrete optimal

transport problem.

The quasi-static iso-classification process

0 =
d

dt
∇θ J =

d

dt
C

can be executed on this changing data distribution.

This is a completely controlled mechanism to transfer representations.

30

Transferring to new tasks

The RDC surface depends on data p(x , y). We now move the data

distribution from the source task to the target task, e.g., interpolate it as

p(x , y , t) = (1− t) ps(x , y) + t pt(x , y).

Can also interpolate data using

p(x , t) = argminp (1− t)W 2
2 (ps , p) + tW 2

2 (p, pt) and solve the discrete optimal

transport problem.

The quasi-static iso-classification process

0 =
d

dt
∇θ J =

d

dt
C

can be executed on this changing data distribution.

This is a completely controlled mechanism to transfer representations.

31

Iso-C process: MNIST 0–4 to 5–9

10 15
Rate

10

15

20

25

Di
st

or
tio

n

Geodesic Quasi-Static Process

0 20 40
number of steps

85

90

95

100

Va
lid

at
io

n
Ac

cu
ra

cy

Non-Equilibrium Process
Geodesic Quasi-Static Process
Training on Target Domain

32

Iso-C process: CIFAR-10 Vehicles to Animals

0 5 10
number of steps

40

60

80

100
Va

lid
at

io
n

Ac
cu

ra
cy

Non-Equilibrium Process
Iso-Classification Process
Training on Target Domain

33

Summary

Simple methods such as transductive fine-tuning work extremely well for

few-shot learning. This is really because of powerful function

approximators such as neural networks.

The RDC surface is a fundamental quantity and enables principled

methods for transfer learning. Also unlocks new paths to understanding

regularization and properties of neural architecture for classical supervised

learning.

We did well in the era of big data without understanding much about

data; this is unlikely to work in the age of little data.

34

Email questions to pratikac@seas.upenn.edu

Read more at

1. Chaudhari, P. and Soatto, S.. Stochastic gradient descent performs variational inference,

converges to limit cycles for deep networks. arXiv:1710.11029. ICLR 2018.

2. Dhillon, G., Chaudhari, P., Ravichandran, A., and Soatto, S. A baseline for few-shot image

classification. arXiv:1909.02729. ICLR 2020.

3. Gao, Y., and Chaudhari, P. A free-energy principle for representation learning.

arXiv:2002.12406. ICML 2020

