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Motivation

• Mathematics of deep learning.
• Structure preserving deep learning.

1 M. Benning, E. Celledoni, M. J. Ehrhardt, B. Owren, C. B. Schönlieb, Deep
learning as optimal control problems: models and numerical methods.
arXiv:1904.05657. Journal of Computational Dynamics.

2 E. Celledoni, M. J. Ehrhardt, C. Etmann, R.I. McLachlan, B. Owren, C. B.
Schönlieb, F. Sherry, Structure preserving deep learning, arXiv:2006.03364.

3 E. Celledoni and S. Fiori, Neural learning by geometric integration of reduced
‘rigid-body’ equations, J CAM, 2004.

Outline:
• Deep learning as optimal control.
• Stability of forward propagation.
• Iterative methods for training (Hamiltonian descent).
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ANN (change the picture if you can)

• An artificial neural network is a network of processing units
(neurons) each taking inputs and producing outputs.
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y[out] = φN−1 ◦· · ·◦φ` ◦· · ·◦φ0 (y[in]),
y[`+1] = φ`(y[`]) = φ(y[`],U [`]),

y[0] = y[in]

• Learning: is a process on the network obtained by establishing an
appropriate cost function: J

(
{y[out]}

)
for all y[in] ∈ D. Optimise wrt

parameters U [1], . . . ,U [`], . . . ,U [N].

• y[in] ∈ D belongs to a large database e.g. of images.

• Stochastic gradient descent for solving the optimisation problem.

• Deep learning large N: important e.g. for visual recognition tasks.
Manifold valued for activity recognition. Deeper neural networks are
more difficult to train.
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Deep learning: classification problems (image recognition)

• He, K., Zhang, X., Ren, S., Sun, J. Deep residual learning for image recognition.
In: CVPR. (2016)

Iterations of stochastic gradient descent

• Adding layers does not always decrease the error.

• DL can lead to vanishing/exploding gradients.

• ResNet works better than feed forward.
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ResNet – Supervised learning (binary classification)

ResNet is made of stacked “Residual Units":
•

y[`+1] = φ`(y[`]) = y[`] + f (y[`],U [`]), y[0] = y[in] ∈ D
where

• introduce a scalar parameter h`

y[`+1] = φ`(y[`]) = y[`] + h` f (y[`],U [`]), y[0] = y[in] ∈ D

• U [`] := (K [`],b[`]) contains the parameters to be determined
(weights and biases).

• f is the residual function in the ResNet jargon: the parameters
interact linearly with the data, and there is a scalar
nonlinearity acting component-wise

• we consider a cost function

J
(
{y[out]}

)
=
∑

y[in]∈D

J (y[out])
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Deep learning algorithms (e.g. ResNet)

Summarised

• y[in] ∈ D data

• N the number of layers, N output layer

• U [`], ` = 0, . . . ,N, parameters that need to be learned

• J
(
{y[out]}

)
for all y[in] ∈ D, cost function

Deep learning problem (ResNet)

min
U [`], `=0,...,N

J
(
{y[out]}

)
subject to

y[`+1] = y[`] + h` f (y[`],U [`]), y[0] := y[in] ∈ D, y[out] := y[N]

Forward Euler discretization of ẏ = f (y,U), y[`+1] = y[`] + h` f (y[`],U [`]), h` = 1.
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Interpretation as discrete optimal control problem

1 E. Haber and L. Ruthotto, Stable Architectures for Deep Neural Networks,
arXiv: 1705.03341v2

2 Qianxiao Li, Long Chen, Cheng Tai, Weinan E, Maximum Principle Based
Algorithms for Deep Learning, Journal of Machine Learning Research 18 (2018).

The deep learning problem can be seen as the discretization of

Optimal control problem

min
U(t)

J({y(T )}), t ∈ [0,T ] (1)

subject to
ẏ = f (y,U), y(0) = y[in] ∈ D. (2)

Why is the optimal control point of view useful:

• it states the deep learning problem in two lines;

• can be used to create new architectures;

• experience shows that continuous models are useful simplifications
of the reality and they are easier to study;

• it offers a starting point for analysis.
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Deep learning optimal control has attracted attention

• Weinan E, A Proposal on Machine Learning via Dynamical Systems, Comm. in
Math. and Stat. 2017.

• B. Chang, L. Meng, E. Haber, L. Ruthotto, D. Begert and E. Holtham,
Reversible Architectures for Arbitrarily Deep Residual Neural Networks, arXiv:
1709.03698v1, AAAI (National Conference on Artificial Intelligence).

• E. Haber, L. Ruthotto, Stable Architectures for Deep Neural Networks, arXiv:
1705.03341v2

• Qianxiao Li Shuji Hao, An Optimal Control Approach to Deep Learning and
Applications to Discrete-Weight Neural Networks

• Qianxiao Li, Long Chen, Cheng Tai, Weinan E, Maximum Principle Based
Algorithms for Deep Learning, J. Machine Learning Research 18 (2018).

• L. Ruthotto and E. Haber, Deep Neural Networks Motivated by Partial
Differential Equations, arXiv:1804.04272

• Lu, Y., Zhong, A., Li, Q., Bin Dong. (arXiv 2017). Beyond Finite Layer Neural
Networks: Bridging Deep Architectures and Numerical Differential Equations.

• Chen, T. Q., Rubanova, Y., Bettencourt, J., Duvenaud, D. (2018). Neural
Ordinary Differential Equations. Presented at NeurIPS.

• Gholami, A., Keutzer, K., Biros, G. (2019, February 26). ANODE:
Unconditionally Accurate Memory-Efficient Gradients for Neural ODEs.

• Zhang, T., Yao, Z., Gholami, A., Keutzer, K., Gonzalez, J., Biros, G., Mahoney,
M. (2019, June 9). ANODEV2: A Coupled Neural ODE Evolution Framework.

• A Effland, E Kobler, K Kunisch, T Pock (J. Math. Im. 2019). Variational
Networks: An Optimal Control Approach to Early Stopping Variational Methods
for Image Restoration.

• J Aghili, O Mula, arXiv:2007.02428, 2020. Depth-Adaptive Neural Networks
from the Optimal Control viewpoint. 8 / 35



Our contribution

• We derive necessary conditions for optimality of the deep
learning optimal control problem leading to a Hamiltonian BVP.

• Investigation of different Runge-Kutta discretizations of the
underlying continuous deep learning problem.

• The usual numerical approach is first discretize J then optimise,
and leads to a gradient descent method for determining the control
parameters U.

• An alternative approach is first optimise then discretize. This
method leads to explicit formulae for the gradients, these are
useful for implementation or for analysis.

• We have implemented a general RK-discretization of the deep
learning optimal control problem compared it with ResNet and Net.

• The discretizations are adaptive in time. Learning the step-size,
the number of layers is determined automatically by the algorithms.
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First order necessary conditions for optimality of the optimal control
problem: Pontryagin maximum principle.

We denote by y one sample of data propagated through the layers.

Theorem The BVP system

ẏ = f (y,U),

ṗ = − (∂yf (y(t),U(t)))T p

0 = (∂U f (y(t),U(t)))T p

with boundary conditions y(0) = x, p(T ) = ∇yJ |y(T ) , expresses the first order
necessary conditions for optimality of the optimal control problem.

BVP is a constrained Hamiltonian system with Hamiltonian

H(y,p,U) = pT f (y,U).

This is an index one differential algebraic equation.

Symplectic
partitioned Runge-Kutta methods are suited to this problem, because
they respect the variational nature of the problem.
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Symplectic-partitioned Runge-Kutta methods

With SPRK: Discretize+optimise same as Optimise+discretize.

discretize
minU J (y(T ))

subj. to ẏ = f (y)
optimize

↙ ↘

minU J (y[N])

subj. to y[`+1] = φ`(y[`])

ẏ = f (y), y(0) = y0,

ṗ = − (∂yf (y(t),U(t)))T p
p(T ) = ∇yJ(y(T ))

0 = (∂U f (y(t),U(t)))T p

optimize ↘ ↙ discretize

y[`+1] = φ`(y[`]),
p[`+1] = φ̃`(p[`]),

∇u[`]J
[`] = 0

Where φ` and φ̃` denote a pair of partitioned, symplectic Runge-Kutta methods.
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First order necessary conditions for optimality of the discrete optimal
control problem (discrete variational method)

Theorem. The discrete BVP system

y[`+1] = y[`] + hf (y[`]U [`]), ` = 1, . . . ,N

p[`+1] = p[`] − h
(
∂yf (y[`],U [`])

)T
p[`+1], ` = 0, . . . ,N − 1

0 =
(
∂U f (y[`],U [`])

)T
p[`+1], ` = 0, . . . ,N − 1.

(here symplectic Euler method but true for all symplectic partitioned
RK), expresses the first order necessary conditions for optimality of the
following discrete optimal control problem (deep learning problem)

min
(y[`],U [`]), `=0,...,N−1

J (y[N]),

subject to
y[`+1] = y[`] + hf (y[`],U [`]), y(0) = y[0].

Proof: analogue to the continuous case.
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Explicit formulae for the gradient

Let y[`] and p[`] be given by a partitioned Runge-Kutta method
applied to the Hamiltonian BVP. Then the gradient of the cost
function J with respect to the control parameters is given by

λ
[`]
i = −∂yf (y[`]i ,U

[`])T

(
p[`+1] − h

s∑
k=1

ak,ibk
bi

λ
[`]
k

)
i = 1, . . . , s

∂U [`]J (y [N]) = h
s∑

i=1

bi∂U [`] f (y[`]i ,U
[`])T

(
p[`+1] − h

s∑
k=1

ak,ibk
bi

λ
[`]
k

)
.

Remark: We assume there is only one control set per step, same U [`] is
used for all the stages in layer `.
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Algorithm: Training ODE-inspired neural networks with gradient descent.

Input: initial guess for the controls U, step size τ
for ` = 1, . . . ,N do

forward propagation with explicit RK method: compute y via

y[`+1] = y[`] + h` f (y[`],U [`])

end for
for ` = N, . . . , 1 do

backpropagation with adjoint method: compute p via

p[`+1] = p[`] − h`

(
∂yf (y[`],U [`])

)T
p[`+1](

∂yf (y[`],U [`])
)T

p[`+1] = K [`]Tγ[`]

and γ[`] can be computed explicitly.
Compute the gradient g [`] := (∂K [`]J (y[N]), ∂b[`]J (y[N])) using the
explicit formulae:

∂K [`]J (y[N]) = h` γ
[`] y[`],T

∂b[`]J (y[N]) = h` γ
[`].

end for
update controls: U = U − τg

τ chosen via backtracking. 14 / 35



Remarks about convergence when N goes to infinity

• Hager proves convergence of order p for SPRK discretizations
to the solution of the optimal control problem under a
coercivity assumption.

• In the context of deep learning, Thorpe and van Gennip, study
deep limits for ResNet by means of gamma convergence.

References
• W. Hager. Runge-Kutta methods in optimal control and the transformed

adjoint system. Num. Math., 87(2):247–282, 2000.
• J. M. Sanz-Serna, Symplectic Runge-Kutta schemes for adjoint equations

automatic differentiation, optimal control and more, SIAM Rev. 58, (2015),
3–33.

• M. Thorpe and Y. van Gennip. Deep limits of residual neural networks. arXiv
preprintarXiv:1810.11741, 2018.
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Test sets

Figure: Dataset: donut1d Figure: Dataset: donut2d

Figure: Dataset: squares Figure: Dataset: spiral

16 / 35



ResNet – Supervised learning (binary classification)

• to training datum y[in] it corresponds a training label c [in]

• y[`+1] = φ(y[`],U [`]), y[0] = y[in] ∈ D
• U [`] := (K [`],b[`]) contains the parameters to be determined
(weights and biases).

• f is the residual function,

f (y[`],U [`]) := σ(K [`]y[`] + b[`]),
σ(ξ) := tanh(ξ),

σ(ξ) := max{0, ξ},
σ is the activation function

• we consider a cost function∑
y[in]∈D

J (y[out]) :=
1
2

∑
y[in]∈D

‖C(K [out]y[out] + b[out])− c [in]‖22,

where the hypothesis function (or classifier) C(ξ) := exp(ξ)
1+exp(ξ) ,

c [in] is the label representing the truth for datum y[in].
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Comparing Runge–Kutta methods – spiral

Figure: Prediction (top) and transformed points (bottom) for the
Runge–Kutta methods (left to right) ResNet/Euler, Improved Euler,
Kutta(3) and Kutta(4). The data set is spiral and we use 15 layers.
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Transitions in Runge–Kutta methods – spiral

Figure: Snap shots of the transition from initial to final state through the
network with the spiral data set. From top to bottom: ResNet/Euler,
Improved Euler, and Kutta(4).
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Comparison of Net, ResNet, ODENet and ODENet+simplex

Figure: Learned transformation with fixed classifier. Prediction (top) and transformed
data (spiral) with linear classifier (bottom) and for Net, ResNet, ODENet and
ODENet+simplex.
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Summary

• We have formulated the ResNet model as an optimal control
problem leading to a Hamiltonian boundary value problem

• We have derived explicit formulas for computing the gradient of the
cost function in the model

• We have implemented several methods
• Arbitrary RK formulas with constant step size
• The ResNet model where the time step is also a learned

parameter of the model
• We have compared with a standard FeedForward algorithm

(not related to ODEs)

• We find that different RK methods perform rather similarly. This
may indicate that the underlying ODE means something in the deep
learning architecture, it seems to be a common denominator for
several different methods

• Leaving h as a parameter in the model improves the performance
and leads to some interesting effects

M. Benning, E. Celledoni, M. J. Ehrhardt, B. Owren, C. B. Schönlieb, Deep
learning as optimal control problems: models and numerical methods.
arXiv:1904.05657. Journal of Computational Dynamics, to appear.
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Structure preserving ODE formulations: U(t) fixed.

We assume the parameters U(t) = (A(t), b(t)) are fixed. Let

f (t, y(t)) := f (y(t),U(t)) = σ(A(t)y(t) + b(t))

be the vector field propagating the data through the network. What
structural properties should f have?

• For example could require that two nearby solutions satisfy

‖y1(T )− y2(T )‖≤ C‖y1(0)− y2(0)‖

for a moderatly sized constant C .
If f is Lipschitz in ite second argument then C = eTL, L Lipschitz
constant, and L = Lσ maxt‖A(t)‖.

• Haber and Ruthotto suggest to use the eigenvalues of the linearized
ODE to analyze the stability, this could give indications of stability
when the parameters A(t) and b(t) are smooth and vary slowly.
E. Haber and L. Ruthotto. Stable architectures for deep neural networks.

Inverse Problems, 34(1):014004, 2017.
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Stability of the forward propagation

• Stability can be studied in terms of Lyapunov functions V (y)

non-increasing (or constant) along solution trajectories (Hopfield
networks).
J. J. Hopfield. Neural networks and physical systems with emergent collective

computational abilities. Proceedings of the national academy of sciences,

79(8):2554–2558, 1982
• For nonlinear ODEs contractivity in L2-norm using a one-sided

Lipschitz constant ν ∈ R such that for all admissible y1, y2 and
t ∈ [0,T ] we have

〈f (t, y2)− f (t, y1), y2 − y1〉 ≤ ν‖y2 − y1‖2.

In this case for any two solutions y1(t) and y2(t)

‖y1(t)− y2(t)‖≤ etν‖y1(0)− y2(0)‖

so that the problem is contractive if ν ≤ 0.
• for f (t, y(t)) = σ(A(t)y(t) + b(t)),
ν ≤ supt,D λmax

(
DA(t)+(DA(t))T

2

)
with D with diagonal entries in

σ′(R)
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Alternative formats for f : f (t, y(t)) = −A2(t)σ (A1(t)y(t) + b1(t)) + b2(t)

For σ ReLU function, Zhang and Schaeffer (2020) give growth and
stability estimates. We consider a simplified case

ẏ = −A(t)T σ(A(t)y(t) + b(t))

which is a gradient system in the sense that
ẏ = −∇yV , V (t, y(t)) = γ(A(t)y(t) + b(t))1, γ′ = σ.

Theorem

• Let V (t, y(t)) be twice differentiable and convex in the second argument.
Then f (t, y(t)) = −∇yV satisfies a one-sided Lipschitz condition with ν ≤ 0.

• Let σ be absolutely continuous and 0 ≤ σ′(s) ≤ 1 a.e. in R. Then f (t, y(t))
satisfies a one-sided Lipschitz condition for any choice of A(t) and b(t) with

−µ2
∗ ≤ νσ ≤ 0, µ∗ = min

t
µ(t)

and µ(t) is the smallest singular value of A(t). In particular νσ = −µ2
∗ is

attained when σ(s) = s.

However “too much” contractivity might not be what’s needed in deep
learning. Hamiltonian vector fields f (t, y(t)) (non-autonomous) have
been proposed by Haber and Ruthotto.
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Contractivity of Runge-Kutta methods

• B-stable Runge-Kutta methods (implicit) preserve
contractivity independently on the step-size h. Example:
implicit Euler method.

• More interesting for deep learning are explicit methods.
Consider the monotonicity condition

〈f (t, y2)− f (t, y1), y2 − y1〉 ≤ ν̄‖f (t, y2)− f (t, y1)‖2,

with constant ν̄. One can prove that all explicit RK methods
with positive weights b1, . . . , bs are contractive for step-sizes

h < −ν̄r

where r is a method dependent constant, e.g. r = 1 for
explicit Euler and RK4. (Dahlquist, 1979).

• Time integration of (non-autonomous) Hamiltonian systems is
not well understood.
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Iterative methods for training the network

• methods gradient based

• amenable for implementations a-la stochastic gradient

Gradient descent, Hamiltonian descent and Adam

Figure: Camel function: 2x2 − 1.05 x4 + 1
6x

6 + xy + y2, u0 = (−0.5, 0.8).
Global minimum at (0, 0).

GD, NaG, HB h = 0.01, RGD h = 0.0001, Adam h = 0.1.
26 / 35



Accelerating gradient descent u̇ = −∇J(u): Hamiltonian descent
Consider:

ṗ = −∇J(u)− γp, γ > 0,

u̇ =
p
m
.

rewritten as a second order equation for u is ü + γ
m

u̇ = − 1
m
∇J(u) which is gradient

decent accelerated by momentum. Leading after discretization to Polyak’s heavy ball
method (momentum method):

pn+1 = pn − h∇J(un)− h γpn,

un+1 = un +
h

m
pn+1,

is a partitioned Runge-Kutta method (forward Euler + backward Euler).
This system is also an example of a conformal Hamiltonian system: let
H(p, u) = K(p) + J(u) be a (separable) Hamiltonian

ṗ = −∇uH(p, u)− γp, γ > 0,

u̇ = ∇pH(p, u),

with H(p, u) = − 1
2m ‖p‖

2
2+J(u), another choice is K(p) =

√
‖p‖2+ε leading to

relativistic gradient descent:

ṗ = −∇uJ(u)− γp, γ > 0,

u̇ =
p√

ε+ ‖p‖2
.
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Accelerating gradient descent u̇ = −∇J(u): Hamiltonian descent

Conformal Hamiltonian system, H(p, u) Hamiltonian function

ṗ = −∇uH(p, u)− γp, γ > 0,

u̇ = ∇pH(p, u).

• Energy dissipative: d
dt
H(p, u) = − γ

2mpTp
• Note that if H(p, u) = K(p) + J(u) is separable and K(p) has a global

minimiser in 0, limit points of the conformal Hamiltonian system recover
stationary points of J(u).
In fact the equilibria of the conformal Hamiltonian system fulfil

γp = ∇uJ(u), 0 = ∇pK(p).

Let p∗ = 0 be the unique global minimum of K then (u∗, 0)

∇H(u∗, 0) = 0 ⇐⇒ ∇J(u∗) = 0

i.e. if and only if u∗ is a stationary point of J(u).
• Conformal symplectic numerical methods for the conformal Hamiltonian

system, guarantee the correct rate of energy dissipation and can be used
to compute the equilibria (u∗, 0), where u∗ is a stationary point of J(u).
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Improving gradient descent: Hamiltonian flow with dissipation

Consider the conformal Hamiltonian system:

ṗ = −∇J(u)− γp, γ > 0,

u̇ =
p
m
, H(p,u) =

1
2m
‖p‖22+J(u),

Polyak’s heavy ball method (momentum method):

pn+1 = pn − h∇J(un)− h γpn,

un+1 = un +
h

m
pn+1,

is a partitioned Runge-Kutta method (forward Euler + backward Euler),
is conformal symplectic.

Nesterov accelerated gradient:

un+ 1
2

= un + µpn,

pn+1 = µpn − h∇J(un+ 1
2

),

un+1 = un+ 1
2

+
h

m
pn+1,

Störmer-Verlet applied to the conformal Hamiltonian sys. after ~p = eγtp.
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Relativistic gradient descent (RGD)

ṗ = −∇J(u)− γp, γ > 0,
u̇ = ∇K (p), H(p,u) = K (p) + J(u),

choose K (p) to get faster convergence e.g.

K (p) =
√
‖p‖2+ε.

RGD related to Adam

pn+1 =
1

1 + hγ
(pn − h∇J(un)), (3)

un+1 = un +
pn+1√

pTn+1pn+1 + ε
. (4)

G. Franca, J. Sulam, D. Robinson, R. Vidal, Conformal Symplectic and
Relativistic Optimization, 2019 arXiv
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References on conformal Hamiltionian systems and Hamiltonian
descent

Relating algorithms to solutions of systems ODEs
1 has been useful to prove their convergence properties;
2 can lead to new and improved iterative methods based on new

numerical discretizations;
3 can be useful to gerenalize the methods to the case when the

parameters belong to a manifold e.g. a Riemannian manifold.
Conformal Hamiltonian systems and conformal symplectic methods
• R.I. McLachlan and M. Perlmutter, Conformal Hamiltonian systems, 2001, J.

Geom. Phys.
• R.I. McLachlan, R. Quispel, Geometric integrators for ODEs, J. Phys A, 2006.
• A. Bhatt, D. Floyd, and B.E. Moore, Second Order Conformal Symplectic

Schemes for Damped Hamiltonian Systems, Journal of Scientific Computing,
66(3):1234-1259, 2016.

Hamiltonian descent and Relativistic Gradient Descent
• CJ Maddison, D Paulin, YW Teh, B O’Donoghue, A Doucet, Hamiltonian

descent methods, arXiv:1809.05042
• B O’Donoghue, CJ Maddison, Hamiltonian descent for composite objectives,

NurlPS.
• G. Franca, J. Sulam, D. Robinson, R. Vidal, Conformal Symplectic and

Relativistic Optimization, 2019 arXiv
• W. Su, S. Boyd, E. J. Candes, A Differential Equation for Modeling Nesterov’s

Accelerated Gradient Method: Theory and Insights, arXiv:1503.01243 31 / 35



Gradient descent and Neural Learning with orthogonality constraints.

Stiefel M = Vn,p and Grassmann M = Gn,p manifolds
Stiefel manifold Grassmann manifold

Q ∈M QTQ = Ip×p Q̃ = QΛ, Q ∈ Vn,p, any Λ ∈ SO(p)

V ∈ TQM V TQ skew-symmetric V TQ = O

• Orthogonality constraints have shown to be a useful tool to
regularise the learned parameters and improve the speed and
efficiency of the training of neural networks.

• Applications: This approach has been used for e.g. blind source
separation of signals ICA and in CNNs.

• Neural learning by geometric integration of reduced ‘rigid-body’ equations E C,
S Fiori, J CAM 172 (2), 247-269

• A class of intrinsic schemes for orthogonal integration E C, B Owren, SIAM J.
on Num. Anal. 40 (6), 2069-2084

• On the implementation of Lie group methods on the Stiefel manifold E C, B
Owren, Numerical Algorithms 32 (2-4), 163-183
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Generalization of Hamiltonian descent and Adam to Stiefel manifolds

MEC learning is a second order learning algorithm on the Stiefel
manifold. We restrict here to the case of one layer network. We assume
we optimise for one element of Vn,p.

Ḃ = (F + P)UT −U(F + P)T ,

U̇ = BU

with P = −γBU. Where y = σ(UTx + b) is the map from input x to
output y, and F = − ∂J

∂U .
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Gradient descent/Hamiltonian descent on Riemannian manifolds

Consider (M, g) a Riemannian manifold grad the Riemannian gradient

u̇ = −grad J(u)

descent methods can be designed using retractions and discrete (Riemannian)
gradients (e.g. coordinate descent Itoh-Abe methods).

• GD and Discrete gradient descent:
• E. Celledoni, S. Eidnes, B. Owren, T. Ringholm, Dissipative

numerical schemes on Riemannian manifolds with applications
to gradient flows. SISC. vol. 40 (6), 2018.

• E. Celledoni and S. Fiori, Neural learning by geometric
integration of reduced rigid body equations, J. CAM, 2004.

• E. Celledoni, S. Fiori, Descent methods for optimization on
homogeneous manifolds, MCS, 2008.

• E. Riis PhD thesis on Discrete gradients and (randomised)
Itoh-Abe for optimisation.

• HD with symplectic methods on Riemannian manifolds
• B. Leimkuhler and G. W. Patrick, A symplectic integrator for

Riemannian manifolds, JNS, 1996.
• Literature on variational Lie group integrators and variational

integrators on manifolds. RATTLE
• Constrained Hamiltonian systems with dissipation.
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Transitions in Runge–Kutta methods – squares. Thank you!

Figure: Snap shots of the transition from initial to final state through the
network with the squares data set. From top to bottom: ResNet/Euler,
Improved Euler, and Kutta(4).
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