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« Tout mathématicien sait qu'il est 
impossible de comprendre un cours 
élémentaire en thermodynamique. »

Vladimir Arnold
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Geometric Theory of Heat: 
Gibbs Diagrams sculpted by James Clerk Maxwell (1874)
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Jean-Marie Souriau (1922-2012): New way of thinking Physics

« Il n'y a rien de plus dans les théories physiques que les groupes de symétrie si ce n'est la 
construction mathématique qui permet précisément de montrer qu'il n'y a rien de plus » -
Jean-Marie Souriau
[There is nothing more in physical theories than symmetry groups except the 
mathematical construction which allows precisely to show that there is nothing more]

« Il est évident que l’on ne peut définir de valeurs 

moyennes que sur des objets appartenant à un 
espace vectoriel (ou affine); donc - si bourbakiste
que puisse sembler cette affirmation - que l’on 
n’observera et ne mesurera de valeurs moyennes 
que sur des grandeurs appartenant à un ensemble 
possédant physiquement une structure affine. Il est 

clair que cette structure est nécessairement unique 
- sinon les valeurs moyennes ne seraient pas bien 
définies. » -
Jean-Marie Souriau
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Gaston Bachelard – Le nouvel esprit scientifique

« La Physique mathématique, en incorporant à sa base la notion de groupe,

marque la suprématie rationnelle… Chaque géométrie – et sans doute plus
généralement chaque organisation mathématique de l’expérience – est

caractérisée par un groupe spécial de transformations…. Le groupe apporte la
preuve d’une mathématique fermée sur elle-même. Sa découverte clôt l’ère des
conventions, plus ou moins indépendantes, plus ou moins cohérentes » -
Gaston Bachelard, Le nouvel esprit scientifique, 1934

G. Bachelard

« Sous cette aspiration, la physique qui était d’abord une science des “agents”

doit devenir une science des “milieux”. C’est en s’adressant à des milieux
nouveaux que l’on peut espérer pousser la diversification et l’analyse des
phénomènes jusqu’à en provoquer la géométrisation fine et complexe, vraiment

intrinsèque… Sans doute, la réalité ne nous a pas encore livré tous ses modèles,
mais nous savons déjà qu’elle ne peut en posséder un plus grand nombre que
celui qui lui est assigné par la théorie mathématique des groupes. » –
Gaston Bachelard, Etude sur l’Evolution d’un problème de Physique 
La propagation thermique dans les solides, 1928

http://www.vrin.fr/book.php?title_url=Etude_sur_l_evolution_d_un_probleme_de_physique_La_propagation_thermique_dans_les_solide
s_9782711600434&search_back=&editor_back=%&page=2

http://www.vrin.fr/book.php?title_url=Etude_sur_l_evolution_d_un_probleme_de_physique_La_propagation_thermique_dans_les_solides_9782711600434&search_back=&editor_back=%25&page=2
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Jean-Marie Souriau Seminal Paper - 1974

Statistical Mechanics, Lie Group and Cosmology - 1st part: Symplectic Model of Statistical Mechanics
Jean-Marie Souriau
Abstract: The classical notion of Gibbs' canonical ensemble is extended to the case of a symplectic
manifold on which a Lie group has a symplectic action ("dynamic group"). The rigorous definition
given here makes it possible to extend a certain number of classical thermodynamic properties
(temperature is here an element of the Lie algebra of the group, heat an element of its dual), notably
inequalities of convexity. In the case of non-commutative groups, particular properties appear: the
symmetry is spontaneously broken, certain relations of cohomological type are verified in the Lie
algebra of the group. Various applications are considered (rotating bodies, covariant or relativistic
statistical Mechanics). [These results specify and complement a study published in an earlier work (*),
which will be designated by the initials SSD].
(*) Souriau, J.-M., Structure des systèmes dynamique. Dunod, collection Dunod Université, Paris 1969.
http://www.jmsouriau.com/structure_des_systemes_dynamiques.htm

Souriau, J-M., Mécanique statistique, groupes de Lie et cosmologie, Colloques Internationaux 
C.N.R.S., n°237 – Géométrie symplectique et physique mathématique, pp.59-113, 1974
English translation by F. Barbaresco: 
https://www.academia.edu/42630654/Statistical_Mechanics_Lie_Group_and_Cosmology_1_st_par

t_Symplectic_Model_of_Statistical_Mechanics

https://www.academia.edu/42630654/Statistical_Mechanics_Lie_Group_and_Cosmology_1_st_part_Symplectic_Model_of_Statistical_Mechanics
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J.M. Souriau, Structure des 

systèmes dynamiques, 

Chapitre IV « Mécanique 

Statistique »

Souriau SSD Chapter IV: Gibbs Equilibrium is not covariant with respect 
to Dynamic Groups of Physics

Trompette de Souriau

Lorsque le fait qu’on rencontre est en 
opposition avec une théorie régnante, il 
faut accepter le fait et abandonner la 

théorie, alors même que celle-ci, 
soutenue par de grands noms, est 
généralement adoptée
- Claude Bernard “Introduction à l’Étude 
de la Médecine Expérimentale”
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Main references for Souriau « Lie Groups Thermodynamics »

1974

Référence to Blanc-Lapierre Book in Souriau Book

1966
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Souriau Quinta Essentia (Quinte Essence)

“Il y a un théorème qui remonte au XXème siècle. Si on prend une orbite coadjointe d’un

groupe de Lie, elle est pourvue d’une structure symplectique. Voici un algorithme pour
produire des variétés symplectiques : prendre des orbites coadjointes d’un groupe. Donc cela
laisse penser que derrière cette structure symplectique de Lagrange, il y avait un groupe
caché. Prenons le mouvement classique d’un moment du groupe, alors ce groupe est très
«gros» pour avoir tout le système solaire. Mais dans ce groupe est inclus le groupe de Galilée,
et tout moment d’un groupe engendre des moments d’un sous-groupe. On va retrouver
comme cela les moments du groupe de Galilée, et si on veut de la mécanique relativiste, cela
va être celui du groupe de Poincaré. En fait avec le groupe de Galilée, il y a un petit problème,
ce ne sont pas les moments du groupe de Galilée qu’on utilise, ce sont les moments d’une
extension centrale du groupe de Galilée, qui s’appelle le groupe de Bargmann, et qui est de
dimension 11. C’est à cause de cette extension, qu’il y a cette fameuse constante arbitraire
figurant dans l’énergie. Par contre quand on fait de la relativité restreinte, on prend le groupe

de Poincaré et il n’y a plus de problèmes car parmi les moments il y a la masse et l’énergie
c’est mc2. Donc le groupe de dimension 11 est un artéfact qui disparait, quand on fait de la
relativité restreinte.”
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SOURIAU: Affine Group and Thermodynamics

« Les différentes versions de la science mécanique peuvent se classer par la 

géométrie que chacune implique pour l’espace et le temps ; géométrie qui se 

détermine par le groupe de covariance de la théorie. Ainsi la mécanique 

newtonienne est covariante par le groupe de Galilée; la relativité restreinte par le 

groupe de Lorentz-Poincaré ; la relativité générale par le groupe « lisse » (le 
groupe des difféomorphismes de l’espace-temps). Il existe cependant une partie 

des énoncés de la mécanique dont la covariance appartient à un quatrième 

groupe – rarement envisagé : le groupe affine. Groupe qui figure dans le 
diagramme d’inclusion suivant :

Comment se fait-il qu’un point de vue unitaire, (qui serait nécessairement une 

véritable Thermodynamique), ne soit pas encore venu couronner le tableau ? 
Mystère... »
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Fundamental Equation of Geometric Thermodynamic: Entropy 
Function is an Invariant Casimir Function in Coadjoint Representation
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Lie Groups Thermodynamic Equations and its extension (1/3)
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Lie Groups Thermodynamic Equations and its extension (2/3)
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Entropy Invariance under the action  of the Group !

Souriau characteristic of the foliation

Entropy Solution of Casimir Equation

Souriau cocycle

Entropy & Poisson Bracket
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Lie Groups Thermodynamic Equations and its extension (3/3)
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Euler-Poincaré Equation in case of Non-Null Cohomology

« Ayant eu l’occasion de m’occuper du mouvement de rotation d’un corps solide 

creux, dont la cavité est remplie de liquide, j’ai été conduit à mettre les équations 

générales de la mécanique sous une forme que je crois nouvelle et qu’il peut 

être intéressant de faire connaître » - Henri Poincaré, CRAS, 18 Février 1901

« Elles sont surtout intéressantes dans le cas où U étant nul, T ne dépend que 

des h » - Henri Poincaré
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de Saxcé, G. Euler-Poincaré equation for Lie groups with
non null symplectic cohomology. Application to the 
mechanics. In GSI 2019. LNCS; Nielsen, F., Barbaresco, 
F., Eds.; Springer: Berlin, Germany, 2019; Volume 11712
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Souriau Model Variational Principle : Poincaré-Cartan Integral
Invariant on Massieu Characteristic Function
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Legendre Transform as Reciprocal Polar with respect to a paraboloid

Φ(β) β,Q S(Q) 
2

 Reciprocal Polar with respect to

the Paraboloid 2 ( )

Φ(β)

Q S Q

Darboux Lecture on Legendre Transform based on Chasles remark
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Koszul Book on Souriau Work: 
The Little Green Book
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Koszul Book on Souriau Work: 
The Little Green Book
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Massieu Potential versus Gibbs Potentials

F E TS 

GIBBS Potential: Free Energy
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MASSIEU Potential : characteristic function

Preservation of 
Legendre Duality

[X] Roger Balian, François Massieu and the thermodynamic potentials, Comptes Rendus Physique

Volume 18, Issues 9–10, November–December 2017, Pages 526-530
https://www.sciencedirect.com/science/article/pii/S1631070517300671

Joseph Louis François Bertrand gave to François 
Massieu a bad advice:
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Preamble: Souriau Lie Groups Thermodynamics

▌ Lie groups are in common use in robotics, but still seem to be little used in 

machine learning. 

▌ We present a model from Geometric Mechanics, developed by Jean-Marie 

Souriau as part of Mechanical Statistics, allowing to define an invariant 

Fisher-type metric and covariant statistical densities under Lie group action. 

▌ This new approach makes it possible to extend supervised and un-

supervised machine learning, jointly:

to elements belonging to a (matrix) Lie group

to elements belonging to a homogeneous manifold on which a group acts 
transitively. 

▌ Other models are under study also using the theory of representations of Lie 

groups [see Tojo keynote].
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Preamble: Souriau Lie Group Statistics & Machine Learning

▌ It could be applied for Lie Groups Statistical Analysis for:

Rigid Objects Trajectories via the SE(3) Lie group

Articulated objects via the SO(3) Lie group

Moving parts Dynamics via the SU(1,1) Lie group

▌ The Souriau model makes it possible in particular to define:

a Gibbs density of Maximum Entropy on the Lie group coadjoint orbits (in the dual 
space of their Lie algebra)

with coadjoint orbits considered as a homogeneous symplectic manifold. 

▌ These densities are parameterized via the Souriau “Moment Map” :

map from the symplectic manifold to the dual space of Lie algebra

tool geometrizing Noether's theorem

on which the group acts via the coadjoint operator
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Preamble: New Geometric Entropy Definition

▌ This model is also very useful in control and navigation, because it makes it 

possible to extend concept of  “Gaussian” noises (in the sense of the 

maximum Entropy) on the Lie algebra. 

▌ In this new model, Entropy is defined as an invariant Casimir function in 

coadjoint representation (this fact gives a natural geometrical definition to 

Entropy via the structural coefficients).

▌ This Souriau Model of Lie Groups Thermodynamics:

Is developed in a MDPI “Entropy” Special Issue on “Lie Group Machine Learning 

and Lie Group Structure Preserving Integrators” 

will be presented  at Les Houches SPIGL’20 on “Joint Structures and Commun

Foundation of Statistical Physics, Information Geometry and Inference for Learning“

will be presented at IRT SystemX workshop on "Topological and geometric 

approaches for statistical learning" 



www.thalesgroup.com OPEN

Motivations for Lie Group 
Machine Learning

ENS Ulm 1942
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AI/Machine Learning Evolution: ALGEBRA COMPUTATION STRUCTURES

BOOLE ALGEBRA

LINEAR ALGEBRA

LIE ALGEBRA

Boolean logic digital circuits 
using electromechanical relays 

as the switching element.
George R. Stibitz (Bell Labs)

GOOGLE TPU (Tensor Processing Unit)

Vectors space, commutative 
matrix operations, eigen-analysis

Symplectic integrators, non-commutative 

operations, coadjoint orbits, moment map

Calcul formel pour les méthodes de Lie en 
mécanique hamiltonienne
P.V. Koseleff, X/CMLS PhD, 1993 (P. Cartier)

Computer Algebra 

Group- Scratchpad, 

IBM,1971

Souriau Exponential Map Algorithm for 
Machine Learning on Matrix Lie Groups
Frédéric Barbaresco, Springer GSI’19, 2019

Supervarieties, Sow. Math. Dokl. 16 (1975), 1218-1222. 
F. A. Berzin and D. A. Leites

LIE SUPER ALGEBRA

Berezian Determinant
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GEOMSTATS: PYTHON Library for Lie Group Machine Learning

https://github.com/geomstats/geomstats

https://hal.inria.fr/hal-02536154

Video: https://m.youtube.com/watch?v=Ju-Wsd84uG0
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Motivation for Lie Group Machine Learning : Data as Lie Groups

▌ Geolocalization and Navigation :

Visio-Inertial SLAM: Visio-Vestibular Brain System

VINet: Visual-

Inertial 
Odometry as a 
Sequence-to-
Sequence 
Learning 
Problem

Works of Daniel Bennequin & Alain Berthoz
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Motivation for Lie Group Machine Learning: Data as Lie Groups

▌ Articulated 3D Movment/Posture Learning
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Zhiwu Huang, Chengde Wan, Thomas Probst, Luc Van Gool, Deep
Learning on Lie Groups for Skeleton-based Action Recognition, Computer 
Vision and Pattern Recognition, CVPR 2017

http://ravitejav.weebly.com/rolling.html
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Path Signatures on Lie Groups
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Extension of Mean-Shift for Lie Group (e.g. with SO(3))
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Motivation for Lie Group Machine Learning: Data in Homogenous 
Space where a Lie Group acts homogeneously

▌ Poincaré/Hyperbolic Embedding in Poincaré Unit Disk for NLP (Natural 

Langage Processing)
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H. Hajri, H. Zaatiti, and G. Hébrail. Learning
graph-structured data using poincaré

embeddings and riemannian k-means
algorithms. CoRR, abs/1907.01662, 2019

M. Nickel and D. Kiela. Poincaré embeddings
for learning hierarchical representations. In
Advances in Neural Information Processing
Systems 30, pages 6338–6347. Curran
Associates, Inc., 2017
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Image Processing by SE(2) Group:
hypoelliptic diffusion in SE(2): analogy with Brain Orientation Maps V1

▌ Image Processing with oriented gradient by SE(2)

2

(2)'
  ,  

1 0 1 1

SOZ t Z

t R

      
      

      

double covering of(2)SE 2PTR



32
Les Houches 27th-31st July 2020

Joint Structures and Common Foundations of Statistical Physics,

Information Geometry and Inference for Learning (SPIGL'20)

OPEN

Lie Group Machine Learning for Drone Recognition

▌ Drone Recognition on Micro-Doppler by SU(1,1) Lie Group Machine Learning

Verblunsky/Trench Theorem: all Toeplitz Hermitian Positive Definite Covariance 

matrices of stationary Radar Time series could be coded and parameterized in a 

product space with a real positive axis (for signal power) and a Poincaré polydisk (for 
Doppler Spectrum shape). 

Poincaré Unit Disk is an homogeneous space where SU(1,1) Lie Group acts 
transitively. Each data in Poincaré unit disk of this polydisk could be then coded by 

SU(1,1) matrix Lie group element.

Micro-Doppler Analysis can be achieved by SU(1,1) Lie Group Machine Learning.

▌ Drone Recognition on Kinematics by SE(3) Lie Group Machine Learning

Trajectories could be coded by SE(3) Lie group time series provided through Invariant 
Extended Kalman Filter (IEKF) Radar Tracker based on local Frenet-Seret model.

Drone kinematics will be then coded by time series of SE(3) matrix Lie Groups 

characterizing local rotation/translation of Frenet frame along the drone trajectory.
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Drone Recognition by Lie Group Machine Learning: SU(1,1) & SE(3)
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Motivation for Lie Group Machine Learning: Data in Homogenous 
Space where a Lie Groups act homogeneously

▌ (Micro-)Doppler & Space-Time wave Learning in Poincaré/Siegel Polydisks
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F. Barbaresco, Lie Group Machine Learning and Gibbs Density on
Poincaré Unit Disk from Souriau Lie Groups Thermodynamics and
SU(1,1) Coadjoint Orbits. In: Nielsen, F., Barbaresco, F. (eds.) GSI 2019.
LNCS, vol. 11712, SPRINGER, 2019
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Matrix Lie Group SU(1,1) for Doppler Data

▌ Lie Group Structure for Doppler Data

Lie Group structure appears naturally on Doppler data, if we consider time series 

of locally stationary signal and their associated covariance matrix. Covariance 

matrix is Toeplitz Hermitian Positive Definite. We can then use a Theorem due to 

Verblunsky and Trench, that this structure of covariance matrix could be coded in 

product space involving the Poincaré unit Polydisk:

where D is the Poincaré Unit Disk:
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Matrix Lie Group SU(1,1) for Doppler Data

▌ Poincaré Unit Disk as a Homogeneous Manifold

The Poincaré unit disk is an homogeneous bounded domain  where the Lie Group 

SU(1,1) act transitively. This Matrix Group is given by

where SU(1,1) acts on the Poincaré Unit Disk by:

with Cartan Decomposition of SU(1,1):

We can observe that   could be considered as action of   

on the centre on the unit disk . 
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Matrix Lie Group SU(1,1) for Doppler Data

▌ Coding Doppler Spectrum by data on SU(1,1) Lie group

The principal idea is that we can code any point  in the unit disk by an 

element of the Lie Group SU(1,1). Main advantage is that the point position is no 

longer coded by coordinates but intrinsically by transformation from 0 to this 

point.  Finally, a covariance matrix of a stationary signal could be coded by (n-1) 

Matrix SU(1,1) Lie Group elements:
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▌ Matrix Extension of Trench/Verblunsky Theorem: Existence of 

diffeomorphism  and Siegel Polydisk (matrix extension of Poincaré Disk)

Extension for Space-Time Processing: Siegel Disk
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Matrix Lie Group SE(3) for Kinematic Data

▌ 3D trajectory and Frenet-Serret Frame

When we consider a 3D trajectory of a mobile target, we 

can describe this curve by a time evolution of the local 

Frenet–Serret frame (local frame with tangent vector, 

normal vector and binormal vector). This frame evolution is 

described by the Frenet-Serrtet formula that gives the 

kinematic properties of the target moving along the 

continuous, differentiable curve in 3D Euclidean space ℝ3. 

More specifically, the formulas describe the derivatives of 

the so-called tangent, normal, and binormal unit vectors in 

terms of each other. 

0 0
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Matrix Lie Group SE(3) for Kinematic Data

▌ 3D trajectory curve

we will consider motions determined by exponentials of paths in the Lie algebra. 

Such a motion is determined by a unit speed space-curve  . Now in a Frenet-

Serret motion a point in the moving body moves along the curve and the 

coordinate frame in the moving body remains aligned with the tangent  , 

normal  , and binormal , of the curve. Using the 4-dimensional representation 

of the Lie Group SE(3), the motion can be specified as :

where   is the curve and the rotation matrix   has the unit vectors  ,  ,and    

as columns:
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Matrix Lie Group SE(3) for Kinematic Data

▌ Time evolution of Frenet-Serret Frame

If we introduce the Darboux vector   that we can rewritte from Frenet-

Serret Formulas :

Then, we can write with Ω is the 3×3 anti-symmetric matrix corresponding to  :

We note that   and                                      

The instantaneous twist of the motion  is given by:

t b   
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Matrix Lie Group SE(3) for Kinematic Data

▌ Instantaneous twist

This is the Lie algebra element corresponding to the tangent vector to the curve  

. It is well known that elements of the Lie algebra  can be described as lines 

with a pitch.  The fixed axode of a motion   is given by the axis of   

as t varies. The instantaneous twist in the moving reference frame is given by  

, that is, by the adjoint action on the twist in the fixed frame. The 

instantaneous twist   can also be found from the relation: 
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Matrix Lie Group SE(3) for Kinematic Data

▌ Trajectory as a time series of Matrix SE(3) Lie groups

We can observe that we could describe  a 3D trajectory by a time series of SE(3) 

Lie group elements:

with                     

Then, the trajectory will be given by the following time series :
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Structuring Principles for Learning : Calculus of Variations

Fermat's principle 

of least time

Maupertuis's

principle of

least length

Pierre

de Fermat

Pierre

Louis

Maupertuis

Joseph

Louis

Lagrange

(Euler)

Lagrange

Equation

Simeon

Denis

Poisson

Poisson

Bracket,

Poisson Geometry 

Structure 

Henri

Poincaré
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Cartan

(Euler)

Poincaré

Equation

Poincaré

Cartan

Integral

Invariant

Jean- Marie

Souriau
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SOURIAU 2019

▌ SOURIAU 2019

Internet website : http://souriau2019.fr

In 1969, 50 years ago, Jean-Marie Souriau published 
the book "Structure des système dynamiques", in 
which using the ideas of J.L. Lagrange, he formalized 
the "Geometric Mechanics" in its modern form based 
on Symplectic Geometry

Chapter IV was dedicated to "Thermodynamics of 
Lie groups" (ref André Blanc-Lapierre)

Testimony of Jean-Pierre Bourguignon at Souriau'19 
(IHES, director of the European ERC)

https://www.youtube.com/watch?v=93hFolIBo0Q&t=3s

https://www.youtube.com/watch?v=beM2pUK1H7o

http://souriau2019.fr/
https://www.youtube.com/watch?v=93hFolIBo0Q&t=3s
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http://www.jmsouriau.com/structure_des_systemes_dynamiques.htm

http://www.springer.com/us/book/9780817636951

▌ Introduction of symplectic

geometry in mechanics

▌ Invention of the “moment map”

▌ Geometrization of Noether's

theorem

▌ Barycentric decomposition 

theorem

▌ The total mass of an isolated 

dynamic system is the class of 

cohomology of the default of 

equivariance for the moment map

▌ Lie Groups Thermodynamics 

(Chapter IV)

Le Livre de J.M. Souriau « Structure des systèmes dynamiques », 1969

http://www.jmsouriau.com/structure_des_systemes_dynamiques.htm
http://www.springer.com/us/book/9780817636951
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Lagrange 2-form rediscovered by Jean-Marie Souriau

Rewriting equations of classical mechanics in phase space

Souriau rediscovered that Lagrange had considered the evolution space:

A dynamic system is represented by a foliation. This foliation is determined by an 

antisymmetric covariant 2nd order tensor      , called the Lagrange (-Souriau) form, 

a bilinear operator on the tangent vectors of V.

In the Lagrange-Souriau model, is a 2-form on the evolution space V, and the 

differential equation of motion implies:
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Evolution space of Lagrange-Souriau
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Gallileo Group & Algebra & V. Bargman Central extensions

▌ Symplectic cocycles of the Galilean group: V. Bargmann (Ann. Math. 59, 

1954, pp 1–46) has proven that the symplectic cohomology space of the 

Galilean group is one-dimensional.

▌ Gallileo Lie Group & Algebra

▌ Bargmann Central extension:
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Souriau Work Roots: François Gallissot Theorem

Gallissot Theorem: There are 3 types of differential forms generating the equations of 

a material point motion, invariant by the action of the Galileo group

constrained the Pfaff form              to be closed and to be reduced to the 

differential of      :

It proves that       has an exterior differential         generating Poincaré-Cartan Integral 

invariant:
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François Gallissot Work in 1952 based on Elie and Henri Cartan works

1952

S’affranchir

de la servitude

des coordonnées
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Interior/Exterior Products and Lie derivative

is the (p-1)-form on   obtained by inserting  as the first argument of  :

Interior product :

is the (p + 1)-form on   where       is a p-form and   is a 1-form on  :

Exterior product : 

(where the hat indicates a term to be omitted).

is a p-form on  ,and                    if the flow of  consists of symmetries of    :

Lie derivative :
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Exterior derivative and E.Cartan, H. Cartan & S. Lie formulas

is the (p+1)-form on   defined by taking the ordinary derivative of   and 

then antisymmetrizing:

Exterior derivative :

The properties of the exterior and Lie Derivative are the following:

(E. Cartan)

(H.Cartan) 

(S. Lie) 
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Souriau Moment Map (1/2)

Let   be a connected symplectic manifold. 

A vector field   on       is called symplectic if its flow preserves the 2-form :  

If we use Elie Cartan's formula, we can deduce that :

but as   then                     . We observe that the 1-form   is closed. 

When this 1-form is exact, there is a smooth function   on        with:  

This vector field   is called Hamiltonian and could be define as s symplectic

gradient :

 ,X
h X
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Souriau Moment Map (2/2)

We define the Poisson bracket of two functions  ,          by :

with                            and                                                    

Let a Lie group   that acts on   and that also preserve  . 

A moment map exists if these infinitesimal generators are actually hamiltonian, so 

that a map exists:                                

with                                     where 

h  i dH0h di

H 'H
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Souriau Model of Lie Groups Thermodynamics

▌ Souriau Geometric (Planck) Temperature is an element of Lie Algebra of Dynamical

Group (Galileo/Poincaré groups) acting on the system

▌ Generalized Entropy is Legendre Transform of minus logarithm of Laplace Transform

▌ Fisher(-Souriau) Metric is a Geometric Calorific Capacity (hessian of Massieu Potential)

▌ Higher Order Souriau Lie Groups Thermodynamics is given by Günther’s Poly-

Symplectic Model (vector-valued model in non-equivariant case)

Souriau formalism is fully covariant, with 

no special coordinates (covariance of 

Gibbs density wrt Dynamical Groups)



58
Les Houches 27th-31st July 2020

Joint Structures and Common Foundations of Statistical Physics,

Information Geometry and Inference for Learning (SPIGL'20)

OPEN

Lie Groups Tools Development: From Group to Co-adjoint Orbits

Group/Lie Group Foundation
Henri Poincaré – Fuchsian Groups

Felix Klein – Erlangen Program (Homogeneous Manifold)

Sophus Lie – Lie Group

Evariste Galois/Louis Joseph Lagange – Substitution Group

Lie Group Classification
Carl-Ludwig Siegel – Symplectic Group

Hermann Weyl – Conformal Geometry, Symplectic Group

Elie Cartan – Lie algebra classification, Symmetric Spaces

Willem Killing – Cartan-Killing form, Killing Vectors

Lie Group Representation
Bertram Kostant – KKS 2-form, Geometric Quantization

Alexandre Kirillov – Representation Theory, KKS 2-form

Jean-Marie Souriau – Moment Map, KKS 2-form, Souriau Cocycle

Valentine Bargmann – Unitary representation, Central extension

Harmonic Analysis on Lie Group & Orbits Method
Pierre Torasso & Michèle Vergne – Poisson-Plancherel Formula

Michel Duflo – Extension of Orbits Method, Plancherel & Character

Alexandre Kirillov – Coadjoint Orbits, Kirillov Character

Jacques Dixmier – Unitary representation of nilpotent Group

Lie Group & Statistical Physics
Jean-Michel Bismut – Random Mechanics

Jean-Marie Souriau – Lie Group Thermodynamics, Souriau Metric

Jean-Louis Koszul – Affine Lie Group & Algebra representation
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Lie Group

▌ GROUP (Mathematics)

A set equipped with a binary operation with 4 axioms:

Closure

Associativity

Identity

invertibility

▌ LIE GROUP

A group that is a differentiable manifold, with the property that the 
group operations  of multiplication and inversion are smooth maps:

A Lie algebra is a vector space with a binary operation 
called the Lie bracket that satisfies axioms: 
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▌ Lie Algebra of Lie Group and Adjoint operators

Let       a Lie Group and          tangent space of       at its neutral element

- Adjoint representation of 

with

- Tangent application of          at neutral element of     

For                             with

- Curve from tangent to                    :                                  

and transform by           :
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▌ Lie Group Adjoint Representation

the adjoint representation of a Lie group is a way of representing its elements 

as linear transformations of the Lie algebra, considered as a vector space

▌ Lie Group Co-Adjoint Representation

the coadjoint representation of a Lie group        , is the dual of the adjoint 

representation (   denotes the dual space to      ):
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Coadjoint operator and Coadjoint Orbits (Kirillov Representation)

▌ Co-adjoint Orbits as Homogeneous Symplectic Manifold by KKS 2-form

A coadjoint orbit:

carry a natural homogeneous symplectic structure by a closed G-invariant 2-form: 

. 

The coadjoint action on      is a Hamiltonian G-action with moment map

▌ Souriau Foundamental Theorem « Every symplectic manifold is a coadjoint

orbit » is based on classification of symplectic homogeneous Lie group 

actions by Souriau, Kostant and Kirillov

 * * *,  subset of ,F gAd F g G F   g g
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F Fad X ad Y F X Y

X Y F

  

 g, g

Lie Group Coadjoint Orbit
(action of Lie Group on dual Lie algebra)

Homogeneous Symplectic Manifold
(a smooth manifold with a closed 

differential 2-form , such that d=0, 
where the Lie Group acts transitively)
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Elementary Structures of Information Geometry

Symplectic

Geometry

Complex

Geometry

Riemannian

Geometry

Koszul Geometry Geometry of Jean-Louis Koszul
Study of homogeneous bounded 
domains geometry, symmetric 

homogeneous spaces and sharp 
convex cones. Introduction of an 
invariant 2-form.

Souriau Geometry

Geometry of Jean-Marie Souriau
Study of homogeneous symplectic

manifolds geometry with the action of 
dynamical groups. Introduction of the 
Lagrange-Souriau 2-form and Lie 
Groups Thermodynamics.

Kähler Geometry

Geometry of Erich Kähler
Study of differential manifolds geometry 

equipped with a unitary structure 
satisfying a condition of integrability. 
The homogeneous Kähler case studied 
by André Lichnerowicz.

Seminal work of Elie Cartan
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Fisher Metric and Fréchet-Darmois (Cramer-Rao) Bound

▌ Cramer-Rao –Fréchet-Darmois Bound has been introduced by Fréchet in 

1939 and by Rao in 1945 as inverse of the Fisher Information Matrix:

▌ Rao has proposed to introduced an invariant metric in parameter space of 

density of probabilities (axiomatised by N. Chentsov):
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▌Fisher Matrix for Gaussian Densities:

Fisher matrix induced the following differential metric  :

Poincaré Model of upper half-plane and unit disk
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1 monovariate gaussian = 1 point in Poincaré unit disk
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Machine Learning & Gradient descent

▌ Gradient descent for Learning

Information geometry has been derived from invariant geometrical structure 

involved in statistical inference. The Fisher metric defines a Riemannian metric as 

the Hessian of two dual potential functions, linked to dually coupled affine 

connections in a manifold of probability distributions. With the Souriau model, this 

structure is extended preserving the Legendre transform between two dual 

potential function parametrized in Lie algebra of the group acting transitively on 

the homogeneous manifold.

Classically, to optimize the parameter   of a probabilistic model, based on a 

sequence of observations , is an online gradient descent with learning rate  , 

and the loss function  :
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Information Geometry & Machine Learning

▌ Information Geometry & Natural Gradient

This simple gradient descent has a first drawback of using the same non-adaptive 

learning rate for all parameter components, and a second drawback of non 

invariance with respect to parameter re-encoding inducing different learning 

rates. S.I. Amari has introduced the natural gradient to preserve this invariance to 
be insensitive to the characteristic scale of each parameter direction. The 

gradient descent could be corrected by   where       is the Fisher information 

matrix with respect to parameter  , given by:
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Natural Gradient & Stochastic Gradient: Natural Langevin Dynamics

▌ Natural Langevin Dynamics: Natural Gradient with Langevin Stochastics

descent

To regularize solution and avoid over-fitting, Stochastic gradient is used, as Langevin 

Stochastic Gradients

Yann Ollivier (FACEBOOK FAIR, previously CNRS LRI Orsay) and Gaëtan Marceau-

Caron (MILA, previously CNRS LRI Orsay and THALES LAS/ATM & TRT PhD) have 

proposed to coupled Natural Gradient with Langevin Dynamics: Natural Langevin 

Dynamics (Best SMF/SEE GSI’17 paper)

The resulting natural Langevin dynamics combines the advantages of Amari’s 

natural gradient descent and Fisher-preconditioned Langevin dynamics for large 

neural networks
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Dual Entropic Natural Gradient

▌ We can define a natural gradient with dual potential given by Shannon 

Entropy H (Legendre transform of characteristic fonction G, logarithm of 

partitiun function).
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Information Geometry & Machine Learning : Legendre structure

▌ Legendre Transform, Dual Potentials & Fisher Metric

S.I. Amari has proved that the Riemannian metric in an 

exponential family is the Fisher information matrix 
defined by:

and the dual potential, the Shannon entropy, is given 

by the Legendre transform:
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Fisher Metric and Koszul 2 form on sharp convex cones

▌ Koszul-Vinberg Characteristic Function, Koszul Forms

J.L. Koszul and E. Vinberg have introduced an affinely invariant Hessian metric on 

a sharp convex cone through its characteristic function

1st Koszul form  :

2nd Koszul form  :

Diffeomorphism:

Legendre transform: 
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Fisher Metric and Souriau 2-form: Lie Groups Thermodyamics

▌ Statistical Mechanics, Dual Potentials & Fisher Metric

In geometric statistical mechanics, J.M. Souriau has developed a “Lie groups 

thermodynamics” of dynamical systems where the (maximum entropy) Gibbs 

density is covariant with respect to the action of the Lie group. In the Souriau 
model, previous structures of information geometry are preserved:

In the Souriau Lie groups thermodynamics model,   is a “geometric” (Planck) 
temperature, element of Lie algebra   of the group, and  is a “geometric” 

heat, element of dual Lie algebra   of the group. 
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Fisher-Souriau Metric and its invariance

▌ Statistical Mechanics & Invariant Souriau-Fisher Metric

In Souriau’s Lie groups thermodynamics, the invariance by re-parameterization in 
information geometry has been replaced by invariance with respect to the 

action of the group. When an element of the group  acts on the element   

of the Lie algebra, given by adjoint operator  . Under the action of the group  

,                , the entropy   and the Fisher metric   are invariant:
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Fisher-Souriau Metric Definition by Souriau Cocycle & Moment Map

▌ Statistical Mechanics & Fisher Metric

Souriau has proposed a Riemannian metric that we have identified as a 

generalization of the Fisher metric:

The tensor   used to define this extended Fisher metric is defined by the 

moment map  , from         (homogeneous symplectic manifold) to the dual 

Lie algebra  , given by:

This tensor  is also defined in tangent space of the cocycle (this 

cocycle appears due to the non-equivariance of the coadjoint operator  , 

action of the group on the dual lie algebra):
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Fisher-Souriau Metric as a non-null Cohomology extension of KKS 2 
form (Kirillov-Kostant-Souriau 2 form)

▌ Souriau definition of Fisher Metric is related to the extension of KKS 2-form 

(Kostant-Kirillov-Souriau) in case of non-null Cohomogy:

     1 2 1 2 1 2with  , , , ,  Z Z Z Z Q Z Z   
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Souriau-Fisher Metric
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Fundamental Souriau Theorem
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Non-equivariance of Coadjoint operator

Non-equivariance of Coadjoint operator:

This is the action of Lie Group on Moment map:

By noting the action of the group on the dual space of the Lie algebra:

Associativity is given by:
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Souriau Cocycle

is called nonequivariance one-cocycle, and it is a measure of the 

lack of equivariance of the moment map.
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Souriau one-cocycle and compute 2-cocycle 

We can also compute tangent of one-cocycle at neutral element, to 

compute 2-cocycle :
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Souriau Tensor

By differentiating the equation on affine action, we have:
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Souriau-Fisher Metric & Souriau Lie Groups Thermodynamics: 
Bedrock for Lie Group Machine Learning

Gibbs canonical
ensemble
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Link with Classical Thermodynamics

▌ We have the reciprocal formula:

▌ For Classical Thermodynamics (Time translation only), we recover the 

definition of Boltzmann-Clausius Entropy:
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Souriau Model of Covariant Gibbs Density

▌ Covariant Souriau-Gibbs density

Souriau has then defined a Gibbs density that is covariant under the action of the 

group:

We can express the Gibbs density with respect to   by inverting the relation 

. Then                                                 with  
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Souriau Lie Groups Thermodynamics: Geometric Calorific Capacity

Souriau-Fisher Metric

is a Geometrization

of Thermodynamical
«Calorific Capacity»

(Pierre Duhem has 

deeply developed
this idea of 

« generalized

capacities »)
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Souriau Lie Group Thermodynamics: Geometric Calorific Capacity
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Souriau-Fisher Metric based on cocycle
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Souriau Lie Groups Thermodynamics: General Equations

Fourier: Analytical Theory

of Heat
Clausius: Mechanical

Theory of Heat
Poisson: Mathematical

Theory of Heat

Souriau: 

Geometric Theory of Heat in 

Chapter IV « Mécanique 

Statistique »

SOURIAU  GEOMETRIC THEORY OF HEAT
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Multivariate Gaussian Density as 1st order Maximum Entropy in 
Souriau Book (Chapter IV)

http://www.jmsouriau.com/structure_

des_systemes_dynamiques.htm

http://www.jmsouriau.com/structure_des_systemes_dynamiques.htm
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Example of Multivariate Gaussian Law (real case)

▌ Multivariate Gaussian law parameterized by moments
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Gromov question: Are there « entropies » associated to moment maps

▌ Bernoulli Lecture - What is Probability?

27 March 2018 - CIB - EPFL - Switzerland

Lecturer: Mikhail Gromov

https://bernoulli.epfl.ch/images/website/What_is_Probability_v2(2).mp4

http://forum.cs-dc.org/uploads/files/1525172771489-alternative-probabilities-2018.pdf

https://bernoulli.epfl.ch/images/website/What_is_Probability_v2(2).mp4
http://forum.cs-dc.org/uploads/files/1525172771489-alternative-probabilities-2018.pdf
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Souriau Entropy Invariance

▌ Casimir Invariant Function in coadjoint representation

We conclude the paper by a deeper study of Souriau model structure. We 

observe that Souriau Entropy   defined on coadjoint orbit of the group has a 

property of invariance :

with respect to Souriau affine definition of coadjoint action:   

where           is called the Souriau cocyle. 

 S Q

   # ( )gS Ad Q S Q

 # *( ) ( )g gAd Q Ad Q g 

 g

Hendrik Casimir
(Thesis supervised by

Niels Bohr & Paul Ehrenfest)

H.B.G. Casimir, On the Rotation of a Rigid Body in 
Quantum Mechanics, Doctoral Thesis, Leiden, 1931.

    ( )gS Q Ad S Q 
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New Entropy Definition: 
Function in Coadjoint

Representation Invariant 
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Entropy as Invariant Casimir Function in Coadjoint Representation
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Souriau Entropy and Casimir Invariant Function

▌ Geometric Definition of Entropy

In the framework of Souriau Lie groups Thermodynamics, we can characterize the 

Entropy as a generalized Casimir invariant function in coadjoint representation,

▌ Geometric Definition of Massieu Characteristic Function

Massieu characteristic function (or log-partition function), dual of Entropy by 

Legendre transform, as a generalized Casimir function in adjoint representation. 

▌ Casimir Function Definition

When M is a Poisson manifold, a function on M is a Casimir function if and only if 

this function is constant on each symplectic leaf (the non-empty open subsets of 

the symplectic leaves are the smallest embedded manifolds of M which are 

Poisson submanifolds)
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Entropy Invariance under the action of the Group (1/2) 
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Entropy Invariance under the action of the Group (2/2) 

      

   

     

        

      

    

1

1 1

*

1

* 1

* *

* * *

( ) , ( ) ,

( ) ( )

( ) log ( ( )) ,

( ) , ,

( ) , ( ),

( ) ,

g g g g

g g

g g

g g g

g g g g

g gg g g

S Q Q S Q Ad Q Ad Ad Ad

Q Ad Ad Q g

Ad Ad g

S Q Ad Ad Q g Ad g

S Q Ad Ad Q g Ad Ad g

S Q Ad Ad Ad Q Ad g Ad

     

 

    

     

     

  



 





      

  



       

     

     

     

      

1

1

*

* *

( ),

( ) ,g gg

g

Ad Ad Q Q S Q Ad Q S

  

   





 

     



99
Les Houches 27th-31st July 2020

Joint Structures and Common Foundations of Statistical Physics,

Information Geometry and Inference for Learning (SPIGL'20)

OPENOPEN

Souriau Entropy and Casimir Invariant Function

▌ Casimir Function and Entropy

Classically, the Entropy is defined axiomatically as Shannon or von Neumann 

Entropies without any geometric structures constraints. 

Entropy could be built by Casimir Function Equation:
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Souriau Entropy and Casimir Invariant Function

▌ Demo

if we consider the heat expression  , that we can write  . 

For each   tangent to the orbit, and so generated by an element   of the Lie 

algebra, if we consider the relation   , we 

differentiate it at   using the property that:

we obtain :  

From last Souriau equation, if we use the identities ,                           and  

Then we can deduce that:  

So, Entropy   should verify:
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Souriau Entropy and Casimir Invariant Function

▌ Demo
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Souriau Entropy and Casimir Invariant Function

▌ Link with Souriau development

Souriau property:    , , , 0Ker Q Z Z       
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Souriau Entropy and Casimir Invariant Function

▌ Dynamic equation

The dual space of the Lie algebra foliates into coadjoint orbits that are also the 

level sets on the entropy. 

The information manifold foliates into level sets of the entropy that could be 

interpreted in the framework of Thermodynamics by the fact that motion 

remaining on this complex surfaces is non-dissipative, whereas motion transversal 

to these surfaces is dissipative, where the dynamic is given by:

with stable equilibrium when:
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Entropy Production and 2nd Principle

▌ 2nd Principle

We can observe that:

Where:                

showing that Entropy production is linked with Souriau tensor related to Fisher 

metric:

It allows to introduce the stochastic extension based on a Stratonovich

differential equation for the stochastic process given by the following relation by 

mean of Souriau’s symplectic cocycle
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Entropy Production and 2nd Principle

▌ Demo
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Geometric (Planck) Temperature in the Lie Algrbra

▌ Let a Group      of a Manifold       with a moment map , the Geometric

(Planck) Temperature is all elements of Lie Agebra of      such that the 

following integrals converges in a neighborhood of      :

notes the duality of     and    

is the Liouville density on 

▌ Theorem: The function is infinitly differentiable in       (the largest 

open proper subset of ) and is nth derivative for all           , the tensor 

integral is convergent:

▌ To each temperature     , we can associate probability law on      with 

distribution function (such that the probability law has a mass equal to 1):

with                                                              and

The set of these probalities law is Gibbs Ensemble of the Dynamic Group,  is the 

Thermodynamic Potential and  Q is the Geometric Heat
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Geometric Fisher Metric: Geometric Heat Capacity

▌ We can observe that the Geometric Heat is function of Geometric

Temperature in Dual Lie Algebra :

▌ We have: 

▌ Its derivative is a 2nd order symmetric tensor: 

▌ This quatratic form is positive, and positive definite for each unless

there exist a non null element such that (means that the 

moment     varies in an affine sub-manifold of      )
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Distribution of probability by Group action

▌ The distribution density under the action of the Lie Group is given by:

▌ The set      of Geometric Temperature is invariant by the adjoint action of

▌ If we use               , we have the constraint

▌ By derivation of (**), we have:                           
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Geometric (Planck) Temperature

▌ We have previously observed that:

▌ is called the Symplectic Cocycle of Lie algebra    associated to 

the momentum map  

where linear application from   to differential function on  :  

and the associated differentiable application  , called moment(um) map: 

▌ is a 2-form of     and verify:

▌ If we define: 

▌ We can observe that : 
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Associated Riemannian Metric: Geometric Fisher Metric

▌ We can compute the image of Geometric Heat by the Lie Group action:

▌ By tangential derivative to the orbit with respect to           and by using

positivity of               , we find: 

▌ is a 2-form of    that verifies:

▌ Then, there exists a symmetric tensor defined on 

▌ With the following invariances: 
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Fisher Metric of Souriau Lie Group Thermodynamics

▌ Souriau has introduced the Riemannian metric

▌ This metric is an extension of Fisher metric, an hessian metric: If we 

differentiate the relation

▌ The Fisher Metric is then a generalization of “Heat Capacity”:
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Continuous Medium Thermodynamics

▌ For Continuous Medium Thermodynamics, « Temperature Vector » is no 

longer constrained to be in Lie Algebra, but only contrained by 

phenomenologic equations (e.g. Navier equations, …).

▌ For Thermodynamic equilibrium, the « Temperature Vector » is a Killing

vector of Space-Time.

▌ For each point X, there is a « Temperature Vector »             , such it is an 

infinitesimal conformal transform of the metric of the univers       : 

▌ Conservation equations can be deduced for components of  Impulsion-

Energy tensor and  Entropy flux       :
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Poincaré-Cartan Integral Invariant of Lie Group Thermodynamics

▌ Analogies between Geometric Mechanics & Geometric Lie Group 

Thermodynamics, provides the following similarities of structures:

▌ We can then consider a similar Poincaré-Cartan-Souriau Pfaffian form:

▌ This analogy provides an associated Poincaré-Cartan Integral Invariant:

transforms in 

▌ For Thermodynamics, we can then deduce an Euler-Poincaré Variational

Principle: The Variational Principle holds on  , for variations                       , 

where    is an arbitrary path that vanishes at the endpoints,    :
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Souriau Gibbs states for Hamiltonian actions of subgroups of the 
Galilean group

Galilean Transformation on position and speed:

Souriau Result: this action is Hamiltonian, with the map J, defined on the evolution 

space of the particle, with value in the dual g* of the Lie algebra G, as momentum 
map

Couplling formula: 
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Souriau Gibbs states for Hamiltonian actions of subgroups of the 
Galilean group

▌ Souriau Gibbs states for one-parameter subgroups of the Galilean group

Souriau Result: Action of the full Galilean group on the space of motions of an 
isolated mechanical system is not related to any Equilibrium Gibbs state (the 

open subset of the Lie algebra, associated to this Gibbs state, is empty)

The 1-parameter subgroup of the Galilean group generated by  element of Lie 
Algebra, is the set of matrices
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Souriau Thermodynamics of butter churn (device used to convert 
cream into butter) or “La Thermodynamique de la crémière”

▌ If we consider the case of the centrifuge

the behaviour of a gas made of point particles of various 

masses in a centrifuge rotating at a constant angular velocity 

(the heavier particles concentrate farther from the rotation 

axis than the lighter ones)
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“The angular momentum is imparted to the gas when 
the molecules collide with the rotating walls, which 
changes the Maxwell distribution at every point, shifting 
its origin. The walls play the role of an angular 
momentum reservoir. Their motion is characterized by a 
certain angular velocity, and the angular velocities   of 
the fluid and of the walls become equal at equilibrium, 
exactly like the equalization of the temperature 
through energy exchanges”. – Roger Balian
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Roger Balian Computation of Gibbs density for centrifuge

▌ Balian made the remarks that “The angular momentum is imparted to the 

gas when the molecules collide with the rotating walls, which changes the 

Maxwell distribution at every point, shifting its origin. The walls play the role 

of an angular momentum reservoir. Their motion is characterized by a 

certain angular velocity, and the angular velocities   of the fluid and of the 

walls become equal at equilibrium, exactly like the equalization of the 
temperature through energy exchanges”.
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Lie Group Thermodynamics: Centrifuge for Butter, U235 & Ribo acides
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Poincaré Unit Disk and SU(1,1) Lie Group

The group of complex unimodular pseudo-unitary matrices  :

the Lie algebra                              is given by:

with the following bases                                  :

with the commutation relation: 

(1,1)SU
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Poincaré Unit Disk and SU(1,1) Lie Group

Dual base on dual Lie algebra is named  

The dual vector space   can be identified with the subspace of   

of the form: 

Coadjoint action of   on dual Lie algebra   is written  

 * * * *

1 2 3, ,u u u g

* *(1,1)g su
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Coadjoint Orbit of SU(1,1) and Souriau Moment Map

The torus                                                            induces rotations of the unit disk

leaves 0 invariant. The stabilizer for the origin 0 of unit disk is maximal compact 

subgroup        of                   . 

B. Cahen has observed that                                       and is diffeomorphic to the unit 

disk   

The moment map is given by:

0
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Coadjoint Orbit of SU(1,1) and Souriau Moment Map

Group   act on   by homography: 

This action corresponds with coadjoint action of   on          .  

The Kirillov-Kostant-Souriau 2-form  of   is given by:

and is associated in the frame by   with:
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Coadjoint Orbit of SU(1,1) and Souriau Moment Map

is linked to the natural action of   on       (by fractional linear transforms) but 

also  the coadjoint action of   on                        .   

could be interpreted as the stereographic projection from the two-sphere   

onto  :
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Covariant Gibbs Density by Souriau Thermodynamics

We can use Kirillov representation theory and his character formula to compute 

Souriau covariant Gibbs density in the unit Poincaré disk.  

For any Lie group  , a coadjoint orbit    has a canonical symplectic form   

given by KKS 2-form        . 

If  is finite dimensional, the corresponding volume element defines a  -invariant 

measure supported on  , which can be interpreted as a tempered distribution. 

The  Fourier transform :

is Ad -invariant. When   is an integral coadjoint orbit, Kirillov has proved 

that this Fourier transform is related to Kirillov character   by:
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Symplectic Metric of Unit Disk

▌ Symplectic Homogeneous Manifold

Let consider   be the open unit disk of Poincaré. For each  

, the pair   is a symplectic homogeneous manifold with:

where         is invariant under the action :

This action is transitive and is globally and strongly Hamiltonian.  Its generators are 

the hamiltonian vector fields associated to the functions:
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Moment Map for SU(1,1)

▌ Invariant Moment Map

The associated moment map   defined by , maps   

into a coadjoint orbit in  . 

Then, we can write the moment map as a matrix element of   :
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Moment Map & Stereographic projection

▌ One sheet of the two-sheeted hyperboloid

The moment map   is a diffeomorphism of   onto one sheet of the two-

sheeted hyperboloid in  , determined by the following equation:

We note   the coadjoint orbit  of               , given by the upper sheet of 

the two-sheeted hyperboloid given by previous equation. 

The orbit method of Kostant-Kirillov-Souriau associates to each of these coadjoint

orbits a representation of the discrete series of  , provided that   is a 

half integer greater or equal than 1:  

When explicitly executing the Kostant-Kirillov construction, the representation 

Hilbert spaces   are realized as closed reproducing kernel subspaces of  

.The Kostant-Kirillov-Souriau orbit method shows that to each coadjoint orbit of a 

connected Lie group is associated a unitary irreducible representation of G 

acting in a Hilbert space H.

J D
*(1,1)su

2 2 2 2
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Gibbs state Equilibrium

▌ One parameter subgroup

Souriau has oberved that action of the full Galilean group on the space of motions 

of an isolated mechanical system is not related to any equilibrium Gibbs state (the 

open subset of the Lie algebra, associated to this Gibbs state is empty). 

The main Souriau idea was to define the Gibbs states for one-parameter 

subgroups of the Galilean group. We will use the same approach, in this case We 

will consider action of the Lie group   on the symplectic manifold (M,ω) 

(Poincaré unit disk) and its momentum map   are such that the following open 

subset is not empty:

The idea of Souriau is to consider a one parameter subgroup of  . To 

parametrize elements of   is through its Lie algebra. In the neighborhood of 

the identity element, the elements of   can be written as the 

exponential of an element   of its Lie algebra :

 1,1SU
J
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( )  

J z

D
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Gibbs State Equilibrium

▌ One parameter subgroup

We can then exponentiate with exponential map to get :

If we make the remark that we have the following relation

we can developed the exponential map :
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Gibbs State Equilibrium

▌ Equilibrium conditions

We can observe that one condition is that   

Then the subset to consider is given by the subset 

such that:

The generalized Gibbs states of the full   group do not exist. However, 

generalized Gibbs states for the one-parameter subgroups                  ,              of 

the   group do exist. 

The generalized Gibbs state associated to   remains invariant under the 

restriction of the action to the one-parameter subgroup of   

generated by .
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Souriau Gibbs density for SU(1,1)

▌ Covariant Gibbs density

We can the write the covariant Gibbs density in the unit disk given by moment map 

of the Lie group  and geometric temperature in its Lie algebra               :              1,1SU   
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Souriau Gibbs density

▌ Covariant Gibbs Density

To write the Gibbs density with respect to its statistical moments, we have to 

express the density with respect to  . 

Then, we have to invert the relation between   and     , to replace

by                                where                                             with  

deduce from Legendre tranform. The mean moment map is given by:
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Fourier/Laplace Transform and Representation Theory

Fourier analysis, named after Joseph Fourier, who showed that representing a 

function as a sum of trigonometric functions greatly simplifies the study of heat 

transfer and addresses classically commutative harmonic analysis. Classical 

commutative harmonic analysis is restricted to functions defined on a topological 

locally compact and Abelian group G (Fourier series when G = Rn/Zn, Fourier 

transform when G = Rn, discrete Fourier transform when G is a finite Abelian 
group). 

The modern development of Fourier analysis during XXth century has explored the 

generalization of Fourier and Fourier-Plancherel formula for non-commutative 

harmonic analysis, applied to locally compact non-Abelian groups. 

This has been solved by geometric approaches based on “orbits methods” 
(Fourier-Plancherel formula for G is given by coadjoint representation of G in dual 

vector space of its Lie algebra) with many contributors (Dixmier, Kirillov, Bernat, 

Arnold, Berezin, Kostant, Souriau, Duflo, Guichardet, Torasso, Vergne, Paradan, 

etc.)
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Dixmier/Kirillov/Duflo/Vergne Representation Theory

▌ Classical Commutative Harmonic Analysis

▌ Fourier Transform

▌ Fourier-Plancherel formula
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Dixmier/Kirillov/Duflo/Vergne Representation Theory

▌ Character-Distribution

(Schwarz) Distribution on       :                                     with

▌ Character Formula: Fourier transform on Lie algebra via Exponential map

▌ Kirillov Character :

▌ Fourier Transform: 
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Covariant Gibbs Density by Souriau Thermodynamics

The moment map is equivariant isomorphism(      coadjoint orbit for                             )                         

In case  , the Kirillov character formula is given by:

where  

which reduces to :  
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Symplectic Group(Carl-Ludwig Siegel) :  Siegel Upper half space SHn

▌ Siegel metric on the Siegel Upper Half Space:

Siegel Upper half Space: 

Isometries of            are given by quotient Group:

with Symplectic Group:

Metric invariant by the automorpisms :
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Cartan-Siegel Symmetric Homogeneous Bounded Domains
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Extension for Gibbs density on Siegel Unit Disk

▌ From Poincaré Unit Disk to Siegel Unit Disk

To extend this approach for covariant Gibbs density on Siegel Unit Disk:

that is a classical matrix extension of Poincaré unit Disk, we have proposed to 

consider   unitary group and the homogeneous space :

  / 0pq pSD Z M C I ZZ    
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Extension for Gibbs density on Siegel Unit Disk

We can use the following decomposition for

and consider the action of   on Siegel Unit Disk   given by:
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Extension for Gibbs density on Siegel Unit Disk

Benjamin Cahen has study this case and introduced the moment map by 

identifing G-equivariantly with      by means of the Killing form   on       :

The set of all elements of   fixed by  is      :

Then, we the equivatiant moment map is given by:

*
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Extension for Gibbs density on Siegel Unit Disk

▌ From Poincaré Unit Disk to Siegel Unit Disk

To extend this approach for covariant Gibbs density on Siegel Unit Disk:

that is a classical matrix extension of Poincaré unit Disk, we have proposed to 

consider   unitary group and the homogeneous space :

The moment map given by: 
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GIBBS DENSITY FOR SE(2) LIE GROUP

▌ Coadjoint action of SE(2)

We will consider Souriau model for   Lie group with non-null cohomology

and then with introduction of Souriau one-cocycle.

We consider  :

The Lie algebra   of             has underlying vector space   and Lie bracket: 

Coadjoint action of   is given by: 
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MOMENT MAP FOR SE(2) LIE GROUP

▌ Moment map Computation for SE(2)

Let   be the moment map of this action relative to the 

symplectic form, we can compute it from its definition:
   2 *

,
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SOURIAU MOMENT MAP FOR SE(2)

▌ Souriau moment map for SE(2)

The moment map   of               is defined by:   

with the right action of  on :

 2 *: 2J R se (2)SE
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SOURIAU COCYCLE FOR SE(2) LIE GROUP & COADJOINT ORBITS

▌ SOURIAU Cocycle Computation

We then compute the one-cocycle of   from the moment map

Coadjoint orbit of   are generated by:

(2)SE
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SOURIAU-FISHER METRIC FOR SE(2) LIE GROUP

▌ FISHER Metric in SOURIAU Model for SE(2)

The KKS 2-form in non-null cohomology case is given by:
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GIBBS DENSITY FOR SE(2) LIE GROUP

▌ Souriau Gibbs density for SE(2)

Considering the symplectic form on

the action of SE(2)  is symplectic and admits the momentum map:

For generalized temperature                                                                 , Souriau Gibbs 

density is given by :
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Gibbs density for SE(2)

The Massieu Potential could be computed : 

By derivation of Massieu potential, we can deduce expression of Heat:

We can the inverse this relation to express generalized temperature with respect 

to the heat:

We can the express the Gibbs density with respect to the Heat Q which is the 

mean of moment map:
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Gibbs density for SE(2)

▌ Souriau Covariant Gibbs density for SE(2)
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Fisher Metric for SE(2)

Entropy is given by:

Fisher Metric is given by:

With

Fisher Metric with respect to moments
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McCulloch & Pitts

(networks of

binary neurons

can do logic),

Donald Hebb

(Hebbian synaptic

plasticity)

Norbert Wiener

(cybernetics)

Neural

Networks Deep 
Learning

Facebook’s AI can 

perform facial 

recognition as 

accurate as 

human & other 

developments 

(Convolutional, Full 

Convolutional, …)

Natural
Gradient

In Information 

Geometry 

Framework,  RIKEN 

introduces Natural 

Gradient based on 

Fisher Information 

Matrix

(coordinate Free 

Gradient)

Deep
Natural

Gradient
LRI ORSAY Lab 

introduces Robust 

Natural Gradient 

for Deep Learning 

(Yann Ollivier & 

Gaetan Marceau-

Caron)

Natural
Langevin
Dynamics

FACEBOOK & MILA 

propose Natural 

Gradient with 

Stochastic 

Langevin Gradient 

(Yann Ollivier & 

Gaetan Marceau-

Caron)

Deep Learning
On Graph

FACEBOOK & 

UCLA extend Deep 

Learning on 

Graph. 

Convolutive

Network on Graph  

(Xavier Bresson, …)

Lie Group 
Machine
Learning

Deep
Learning

on Lie Group

2
0
1
9

Semi-supervised 

and nuclear 

learning 

frameworks based 

on Lie group

Theory (Fanzhang

Li, Li Zhang, Zhao 

Zhang)

Deep network 

architecture to

learn more 

appropriate Lie 

group features for 3D 

action recognition

(ETH Zurich, KU 

Leuven)

2
n

d
w
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r 
9

0
’s

1
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w
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0
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Machine
Learning on

Homogeneous
Symplectic

Manifold
of Lie Group
co-adjoint

Orbits
(Jean-Marie 

Souriau model)
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Supervised & Non-Supervised Learning on Lie Groups

Souriau-Fisher Metric 
on Coadjoint Orbits

Extension of Fisher Metric for Lie 
Group through homogeneous 
Symplectic Manifolds on Lie 
Group Co-Adjoint Orbits

Mean-Shift on Lie Groups 
with Souriau-Fisher Distance

Extension of Mean-Shift for 
Homogeneous Symplectic
Manifold and Souriau-Fisher Metric 
Space 

Geodesic Natural 
Gradient on Lie Algebra

Extension of Neural Network 
Natural Gradient from Information 
Geometry on Lie Algebra for Lie 
Groups Machine Learning

Souriau Maximum Entropy 
Density on Co-Adjoint Orbits

Covariant Maximum Entropy 
Probability Density for Lie Groups 
defined with Souriau Moment 
Map, Co-Adjoint Orbits Method & 
Kirillov Representation Theory

Exponential Map for Geodesic 
Natural Gradient on Lie Algebra 
based on Souriau Algorithm for 
Matrix Characteristic Polynomial

Fréchet Geodesic Barycenter
by Hermann Karcher Flow

Extension of Mean/Median on Lie 
Group by Fréchet Definition of 
Geodesic Barycenter on Souriau-
Fisher Metric Space, solved by 
Karcher Flow

LIE GROUP SUPERVISED LEARNING LIE GROUP NON-SUPERVISED LEARNING

Lie
Group

Machine
Learning

Souriau Exponential Map
on Lie Algebra

Symplectic Integrator 
preserving Moment Map

Extension of Neural Network 
Natural Gradient to Geometric 
Integrators as Symplectic
integrators that preserve moment 
map



162
Les Houches 27th-31st July 2020

Joint Structures and Common Foundations of Statistical Physics,

Information Geometry and Inference for Learning (SPIGL'20)

OPEN

Rational to Use Lie Groups for THALES Machine Learning Applications

Lie Group is 
Simple

(natural principles 
as foundations of 

Geometry)
Lie Group 
preserves 
invariance wrt all 
transformations

Lie Group uses
all Symmetries of 

your problem Lie Groups Time 
Serie Captures 
Intrinsic Time 
Dynamic (e.g. 
Movement)

Lie Group is 
Coordinate Free
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Thales Air Systems   Date

Esprit de finesse et esprit de géométrie

Pour la théorie de la connaissance mais aussi pour les sciences est fondamentale
la notion de perspective.
Or, les expériences faites dans la géométrie algébriques, dans la théorie des
nombres, et dans l’algèbre abstraite m’induisent à tenter une formulation
mathématique de cette notion pour surmonter ainsi au moyen de
raisonnements d’origine géométrique la géométrie. Il me semble en effet, que la
tendance vers l’abstraction observée dans les mathématiques d’aujourd’hui,
loin d’être l’ennemi de l’intuition ait le sens profond de quitter l’intuition pour la

faire renaitre dans une alliance entre « esprit de géométrie » et « esprit de

finesse », alliance rendue possible par les réserves énormes des mathématiques
pures dont Pascal et Goethe ne pouvaient pas encore se douter.

Erich Kähler – Sur la théorie des corps purement algébriques, 1952
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https://www.mdpi.com/journal/entropy/special_issues/Lie_group

Special Issue

"Lie Group Machine 

Learning and Lie Group 

Structure Preserving 

Integrators"
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SOURIAU 2019

▌ SOURIAU 2019

Internet website : http://souriau2019.fr

In 1969, 50 years ago, Jean-Marie Souriau published 
the book "Structure des système dynamiques", in 
which using the ideas of J.L. Lagrange, he formalized 
the "Geometric Mechanics" in its modern form based 
on Symplectic Geometry

Chapter IV was dedicated to "Thermodynamics of 
Lie groups" (ref André Blanc-Lapierre)

Testimony of Jean-Pierre Bourguignon at Souriau'19 
(IHES, director of the European ERC)

https://www.youtube.com/watch?v=93hFolIBo0Q&t=3s

https://www.youtube.com/watch?v=beM2pUK1H7o

J.M. Souriau Interview:
https://www.youtube.com/w
atch?v=uz69vWHXzWY 

http://souriau2019.fr/
https://www.youtube.com/watch?v=93hFolIBo0Q&t=3s
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FGSI’19 Cartan-Koszul-Souriau 
Foundations of Geometric Structures of Information

https://fgsi2019.sciencesconf.org/
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TGSI’17 videos & slides

http://forum.cs-dc.org/category/94/tgsi2017

Special Issue "Topological and 

Geometrical Structure of 

Information”, Selected Papers from 

CIRM conferences 2017"

http://www.mdpi.com/journal/entropy/speci

al_issues/topological_geometrical_info

CIRM Seminar, August 2017
TGSI’17 « Topological & Geometrical Structures of Information »

Talk on Koszul-Souriau Characteristic Function:
https://www.youtube.com/watch?v=VXxiMCn-tsE&feature=youtu.be

https://www.youtube.com/watch?v=VXxiMCn-tsE&feature=youtu.be
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Jean Louis Koszul Lectures

at Sao Paulo:
• Faisceaux et Cohomologie

• Variétés Kählériennes

• Exposés sur les espaces homogènes 

symétriques

Jean-Louis Koszul was

foreign member of São Paulo Academia of Sciences

Sao Paulo Journal of 

Mathematical Sciences

SPRINGER

Editor-in-Chief: Claudio 

Gorodski
https://www.springer.com/mathemati

cs/journal/40863

https://www.springer.com/mathematics/journal/40863
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GSI’13 Mines ParisTech

GSI’15 Ecole Polytechnique

Slides :
https://www.see.asso.fr/gsi2013

Videos: 
https://www.youtube.com/channel/UC5HHo1jbQXusNQzU1iekaGA

UNITWIN website (slides & videos):
http://forum.cs-dc.org/category/90/gsi2015

GSI’17 Mines ParisTech
Videos: https://www.youtube.com/channel/UCnE9-

LbfFRqtaes49cN2DVg/videos

UNITWIN website (slides & videos):
http://forum.cs-dc.org/category/135/gsi2017

https://www.see.asso.fr/gsi2013
https://www.youtube.com/channel/UC5HHo1jbQXusNQzU1iekaGA
http://forum.cs-dc.org/category/90/gsi2015
https://www.youtube.com/channel/UCnE9-LbfFRqtaes49cN2DVg/videos
http://forum.cs-dc.org/category/135/gsi2017
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GSI’19 ENAC

website :
https://www.see.asso.fr/en/GSI2019

https://www.see.asso.fr/en/GSI2019
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Fisher Metric by Misha Gromov (IHES)

▌ M. Gromov, In a Search for a Structure, Part 1: On 
Entropy. July 6, 2012

http://www.ihes.fr/~gromov/PDF/structre-serch-entropy-

july5-2012.pdf

▌ Gromov Six Lectures on Probability, Symmetry, 
Linearity. October 2014, Jussieu, November 6th , 2014

Lecture Slides & video:

http://www.ihes.fr/~gromov/PDF/probability-huge-Lecture-

Nov-2014.pdf

https://www.youtube.com/watch?v=hb4D8yMdov4

▌ Gromov Four Lectures on Mathematical Structures 
arising from Genetics and Molecular Biology, IHES, 
October 2013

https://www.youtube.com/watch?v=v7QuYuoyLQc&t=5935s

(at time 01h35min)

http://www.ihes.fr/~gromov/PDF/structre-serch-entropy-july5-2012.pdf
http://www.ihes.fr/~gromov/PDF/probability-huge-Lecture-Nov-2014.pdf
https://www.youtube.com/watch?v=hb4D8yMdov4
https://www.youtube.com/watch?v=v7QuYuoyLQc&t=5935s
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Koszul Book on Souriau Work
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Books

https://www.springer.com/u
s/book/9783030025199

https://www.mdpi.com/journal
/entropy/special_issues/fourier

https://www.mdpi.com/books/
pdfview/book/127

https://www.mdpi.com/books/
pdfview/book/313

https://www.springer.com/us/book/9783030025199
https://www.mdpi.com/journal/entropy/special_issues/fourier
https://www.mdpi.com/books/pdfview/book/127
https://www.mdpi.com/books/pdfview/book/313
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Jean-Marie Souriau Geometric Theory 
of Heat, 250 years after Joseph Fourier

▌ MDPI Entropy Book for Joseph Fourier 

250th Birthday

https://www.mdpi.com/journal/entropy/sp

ecial_issues/fourier 

▌ Jean-Marie Souriau Geometric Theory 

of Heat: Bedrock for Lie Group Machine 

Learning

Barbaresco, F. : Higher Order Geometric 

Theory of Information and Heat Based on 

Poly-Symplectic Geometry of Souriau Lie 

Groups Thermodynamics and Their 

Contextures: The Bedrock for Lie Group 

Machine Learning. Entropy, 20, 840, (2018).
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Charles-Michel Marle Books

https://www.amazon.fr/gp/pro

duct/2916352708/ref=dbs_a_d

ef_rwt_bibl_vppi_i0

https://www.amazon.fr/gp/product/2916352708/ref=dbs_a_def_rwt_bibl_vppi_i0
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Référence Book: Gery de Saxcé & Claude Vallée

This title proposes a unified approach to continuum 

mechanics which is consistent with Galilean relativity.  

Based on the notion of affine tensors, a simple 

generalization of the classical tensors, this approach 

allows gathering the usual mechanical entities — mass, 

energy, force, moment, stresses, linear and angular 

momentum — in a single tensor.

Starting with the basic subjects, and continuing through 

to the most advanced topics, the authors' presentation is 

progressive, inductive and bottom-up. They begin with 

the concept of an affine tensor, a natural extension of 

the classical tensors. The simplest types of affine tensors 

are the points of an affine space and the affine functions 

on this space, but there are more complex ones which 

are relevant for mechanics − torsors and momenta. The 

essential point is to derive the balance equations of a 

continuum from a unique principle which claims that 

these tensors are affine-divergence free.

https://www.wiley.com/en-

us/Galilean+Mechanics+and+Thermodynamics+of+Conti

nua-p-9781848216426

https://www.wiley.com/en-us/Galilean+Mechanics+and+Thermodynamics+of+Continua-p-9781848216426
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Poisson Geometry

Yvette Kosmann-Schwarzbach Camille Laurent-Gengoux
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Geometric Structures of Information, SPRINGER

▌ Geometric Structures of Information

https://www.springer.com/us/book/978303002

5199

▌ Paper on Jean-Louis Koszul

Barbaresco, F. , Jean-Louis Koszul and the 

Elementary Structures of Information 

Geometry, Geometric Structures of 

Information, pp 333-392, SPRINGER, 2018

https://link.springer.com/chapter/10.1007%2F9

78-3-030-02520-5_12

https://link.springer.com/chapter/10.1007/978-3-030-02520-5_12
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GSI’13 Springer 

Proceedings:

http://www.springer.com/u

s/book/9783642400193

GSI’15 Springer 

Proceedings:

http://www.springer.com/la

/book/9783319250397

GSI’17 Springer 

Proceedings:

http://www.springer.com/c

n/book/9783319684444

GSI SPRINGER PROCEEDINGS Collection
GSI’19 Springer 

Proceedings:

https://www.springer.com/

gp/book/9783030269791

http://www.springer.com/us/book/9783642400193
http://www.springer.com/la/book/9783319250397
http://www.springer.com/cn/book/9783319684444
https://www.springer.com/gp/book/9783030269791
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Seminal Work of Muriel Casalis supervised by Gérard Letac
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Covariant Gibbs Density by Souriau Thermodynamics

Jean-Marie Souriau, Structure des systèmes dynamiques, Dunod, 1969

Jean-Marie Souriau, Mécanique statistique, groupes de Lie et cosmologie, 

Colloques int. du CNRS numéro 237. Aix-en-Provence, France, 24–28, pp. 59–113, 

1974 

Frédéric Barbaresco; François Gay-Balmaz, F. Lie Group Cohomology and 

(Multi)Symplectic Integrators: New Geometric Tools for Lie Group Machine 

Learning Based on Souriau Geometric Statistical Mechanics. Entropy 2020, 22, 

498.

Frédéric Barbaresco ; Lie Group Statistics and Lie Group Machine Learning based

on Souriau Lie Groups Thermodynamics & Koszul-Souriau-Fisher Metric: New 

Entropy Definition as Generalized Casimir Invariant Function in Coadjoint

Representation, MDPI Entropy, 2020

Frédéric Barbaresco; Radar Processing based on Matrix Lie Groups Geometry & 

Souriau Coadjoint Orbits Method, Preprint Academia, 2020
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Covariant Gibbs Density by Souriau Thermodynamics

Charles-Michel Marle. From Tools in Symplectic and Poisson Geometry to J.-M. 

Souriau’s Theories of Statistical Mechanics and Ther-modynamics. MDPI Entropy, 

18, 370, 2016

Charles-Michel Marle, Projection stéréographique et moments, hal-02157930, 

version 1, Juin 2019

Jean-Louis Koszul, Introduction to Symplectic Geometry, SPRINGER, 2019

Koichi Tojo, Taro Yoshino, Harmonic exponential families on homogeneous

spaces, preprint 2020

Koichi Tojo, Taro Yoshino, On a method to construct exponential families by 

representation theory. In: Nielsen, F., Barbaresco, F. (eds.) GSI 2019. LNCS, vol. 

11712, SPRINGER, 2019

Koichi Tojo, Taro Yoshino, A method to construct exponential families by 

representation theory, arXiv:1811.01394v3.



185
Les Houches 27th-31st July 2020

Joint Structures and Common Foundations of Statistical Physics,

Information Geometry and Inference for Learning (SPIGL'20)

OPENOPEN

Covariant Gibbs Density by Souriau Thermodynamics

Y. Li, T. Guo, X. Liu and R. Xia, Skeleton-based Action Recognition with Lie Group 

and Deep Neural Networks, 2019 IEEE 4th Inter-national Conference on Signal 

and Image Processing (ICSIP), Wuxi, China, 2019, pp. 26-30

Zhiwu Huang, Chengde Wan, Thomas Probst, Luc Van Gool, Deep Learning on Lie 

Groups for Skeleton-based Action Recognition, Computer Vision and Pattern 

Recognition, CVPR 2017

Li Fanzhang, Zhang Li, Zhang, Zhao, Lie Group Machine Learning, DE GRUYTER, 

Nov. 2018

Frédéric Barbaresco, Elena Cellodoni, François Gay-Balmaz & Joël Bensoam, 

Special Issue MDPI Entropy “Lie Group Machine Learn-ing and Lie Group Structure 

Preserving Integrators”, 

https://www.mdpi.com/journal/entropy/special_issues/Lie_group

Les Houches Summer Week, Joint Structures and Common Foundation of 

Statistical Physics, Information Geometry and Inference for Learning (SPIGL'20); 

26th July to 31st July 2020; https://franknielsen.github.io/SPIG-LesHouches2020/ 
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Covariant Gibbs Density by Souriau Thermodynamics

Pierre Cartier, Some fundamental techniques in the theory of integrable systems, 

IHES/M/94/23, SW9421, Mars 1994.

Laurent-Gengoux C., Pichereau A., Vanhaecke P., Poisson Structures, 

Grundlehren der mathematischen Wissenschaften, SPRINGER, 2013

D. Chevallier, J. Lerbet,  Rigid Body systems Kinematics and Dynamics with Lie 

Groups, ISTE-Wiley, 334 pp, Nov 2017

Frédéric Barbaresco, Souriau Symplectic Structures of Lie Group Machine 

Learning on Statistical Drone Doppler/Kinematic Signatures, Isaac Newton 

Institute, Cambridge University, December 2019; 

https://gateway.newton.ac.uk/presentation/2019-12-03/27670 

de Saxcé, G. Euler-Poincaré equation for Lie groups with non null symplectic

cohomology. Application to the mechanics. In GSI 2019. LNCS; Nielsen, F., 

Barbaresco, F., Eds.; Springer: Berlin, Germany, 2019; Volume 11712.

Workshop IRT SystemX, Approches topologiques et géométriques pour 

l’apprentissage statistique, théorie et pratique ; 2020; https://www.irt-

systemx.fr/evenements/workshop-approches-topologiques-et-geometriques-

pour-lapprentissage-statistique-theorie-et-pratique/

https://www.irt-systemx.fr/evenements/workshop-approches-topologiques-et-geometriques-pour-lapprentissage-statistique-theorie-et-pratique/
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Entropy Definition by Jean-Marie Souriau (1/4)

▌ Let        a vector space of finite size,       a measure on the dual space     , 

then the function given by:        

for all               such that the integral is convergent. 

▌ This function is called Laplace Transform.  This transform       of the measure 

is differentiable inside its definition set                . Its p-th derivables are 

given by the following convergent integrals :
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Entropy Definition by Jean-Marie Souriau (2/4)

▌ Souriau Theorem:

Let       a vector space of finite size,       a non zero positive measure of its dual 

space ,     its Laplace transform, then:

- is a semi-definite convex function,  

- is convex and semi-continuous

- Let       an interior point of                then:

–

–

– inversible          affine Enveloppe (support( )) =
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Entropy Definition by Jean-Marie Souriau (3/4)

▌ Lemme:

Let       a locally compact space, Let   a positive measure of       , with       as 

support, then the following function       is convex:

such that the integral is convergent.

▌ Proof: 

The integral is strictly positive when its converges, insuring existence of its 

logarithm

Epigraph       is the set of         such that                                  .                 

Convexity of exponential prove that this epigraph is convex.
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Balian Computation of Gibbs 
Density for Dynamical 
Centrifuge System
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Roger Balian Computation of Gibbs density for centrifuge

Balian has computed the Boltzmann-Gibbs distribution without knowing Souriau 

equations. Exercice 7b of :

- Balian, R. From Microphysics to Macrophysics, 2nd ed.; Springer: Berlin, Germany, 

2007; Volume I

Balian started by considering the constants of motion that are the energy and the 

component   of the total angular momentum:

Balian observed that he must add to the Lagrangian parameter, given by 

(Planck) temperature   for energy, an additional one associated with  . 

He identifies this additional multiplier with   by evaluating the mean velocity 

at each point. 

He then introduced the same results also by changing the frame of reference, the 

Lagrangian and the Hamiltonian in the rotating frame and by writing down the 

canonical equilibrium in that frame. He uses the resulting distribution to find, 

through integration, over the momenta, an expression for the particles density as 

the function of the distance from the cylinder axis.

zJ  i i

i

J r p 

 zJ
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Roger Balian Computation of Gibbs density for centrifuge

The fluid carried along by the walls of the rotating vessel acquires a non-vanishing 

average angular momentum   around the axis of rotation, that is a constant 

of motion. In order to be able to assign to it a definite value, Balian proposed to 

associate with it a Lagrangian multiplier  , in exactly the same way as we 

classically associate the multiplier   with the energy in canonical equilibrium. 

The average   will be a function of  . The Gibbs density for rotating gas is 

given by Balian as:

With the energy and the average angular momentum given by:
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Roger Balian Computation of Gibbs density for centrifuge

The Lagrangian parameter   has a mechanical nature. To identify this parameter, 

Balian compared microscopic and macroscopy descriptions of fluid mechanics. He 

described the single-particle reduced density by:

Whence Balian finds the velocity distribution at a point r to be proportional to:

The mean velocity of the fluid at the point r is equal to:

and can be identified with the velocity   in an uniform rotation with angular 

velocity  . By comparison, Balian put  : 
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Roger Balian Computation of Gibbs density for centrifuge

▌ Balian made the remarks that “The angular momentum is imparted to the 

gas when the molecules collide with the rotating walls, which changes the 

Maxwell distribution at every point, shifting its origin. The walls play the role 

of an angular momentum reservoir. Their motion is characterized by a 

certain angular velocity, and the angular velocities   of the fluid and of the 

walls become equal at equilibrium, exactly like the equalization of the 
temperature through energy exchanges”.
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Compatible Balian Gauge Theory of Thermodynamics

▌ Entropy      is an extensive variable                         depending on                          

n independent extensive/conservative quantities characterizing the system

▌ The n intensive variables   are defined as the partial derivatives:

▌ Balian has introduced a non-vanishing gauge variable  which multiplies all 

the intensive variables, defining a new set of variables:

▌ The 2n+1-dimensional space is thereby extended into a 2n+2-dimensional 

thermodynamic space   spanned by the variables  

,where the physical system is associated with a n+1-dimensional manifold  

in     , parameterized for instance by the coordinates   and       . 

S  nqqSq ,...,10  ),...,1(  niqi 

i

i

n

i
q

qqS






),...,( 1



nipp ii ,...,1   ,   .0  

T ni qp i

i ,...,1,0 with   , 

M

T
nqq ,...,1

0p



198
Les Houches 27th-31st July 2020

Joint Structures and Common Foundations of Statistical Physics,

Information Geometry and Inference for Learning (SPIGL'20)

OPENOPEN

Compatible Balian Gauge Theory of Thermodynamics

▌ the contact structure  in 2n+1 dimension:

▌ is embedded into a symplectic structure in 2n+2 dimension, with 1-form, as 

symplectization:

▌ The n +1-dimensional thermodynamic manifolds   are characterized by 

: . The 1-form induces then a symplectic structure on  :

▌ The concavity of the entropy  , as function of the extensive 

variables,  expresses the stability of equilibrium states. It entails the 

existence of a metric structure in the n-dimensional space  :

▌ which defines a distance between two neighboring thermodynamic states: 
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Compatible Balian Gauge Theory of Thermodynamics

▌ We can observe that this Gauge Theory of Thermodynamics is compatible 

with Souriau Lie Group Thermodynamics, where we have to consider the 

Souriau vector :

transformed in a new vector  
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Multivariate Gaussian Density as 1st order Maximum Entropy in 
Souriau Book (Chapter IV)

http://www.jmsouriau.com/structure_

des_systemes_dynamiques.htm

http://www.jmsouriau.com/structure_des_systemes_dynamiques.htm
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Example of Multivariate Gaussian Law (real case)

▌ Multivariate Gaussian law parameterized by moments
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Information Geometry for Multivariate Gaussian Density

▌ For multivariate gaussian density of meam and covariance matrix      , 

classical parameterization is given by:

▌ New parameterization by Information Geometry as Gibbs density: 
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Information Geometry for Multivariate Gaussian Density

▌ Massieu characteristic function:

▌ Deriving relation providing moment:
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Information Geometry for Multivariate Gaussian Density

▌ (Shannon) Entropy, Legendre transform of Massieu characteristic function

▌ (Shannon) Entropy with new parameterization:
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Souriau Book on « Calcul Linéaire » & Leverrier-Souriau Algorithm

Souriau, J.-M..:Une méthode pour la 

décomposition spectrale et l’inversion des 

matrices. Comptes-Rendus

hebdomadaires des séances de 

l’Académie des Sciences 227 (2), 1010–

1011, Gauthier-Villars, Paris (1948).
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Souriau Algorithm for Characteristic Polynomial Computation

▌ Souriau Algorithm (1948)

   
0

det
n

n i

i

i

P I A k   



       
1

1

0

n
n i

i

i

Q adj I A B  


 



   

 

 

 

0 0

1

1 1

1

1   and   

1
   ,   ,  1,..., 1

1
    or   

1
   and   

i i i i

i i i i i i

n n n n

k B I

A B A k tr A i n
i

B A k I B B A tr B A I
i

A B A k tr A
n



 



 


    


    


  



209
Les Houches 27th-31st July 2020

Joint Structures and Common Foundations of Statistical Physics,

Information Geometry and Inference for Learning (SPIGL'20)

OPENOPEN

Souriau Algorithm for Exponential Map Computation

▌ Souriau Extension Algorithm for Exponential Map
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Souriau algorithm to recover Lie Group Rodrigue’s formula
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Reference

▌ Souriau Exponential Map Algorithm for Machine Learning on Matrix Lie 

Groups

https://link.springer.com/chapter/10.1007%2F978-3-030-26980-7_10

https://link.springer.com/chapter/10.1007%2F978-3-030-26980-7_10
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Seminal work of Muriel Casalis (Institut Mathématique de Toulouse)

▌ Muriel Casalis PhD at Paul Sabatier Toulouse University supervised by Gérard Letac

▌ Reference of Muriel Casalis

Casalis, M.: Familles exponentielles naturelles invariantes par un groupe. PhD from Paul Sabatier 

university, Toulouse, France,1990

Casalis, M.: Familles exponentielles naturelles sur Rd invariantes par un groupe. Int. Stat. Rev., 

59(2):241–262, 1991.

Casalis, M. : Les familles exponentielles à variance quadratique homogène sont des lois de Wishart

sur un cône symétrique, C. R. Acad. Sci. Paris Sér. I Math. 312 , p. 537–540., 1991

▌ References of Gérard LETAC

Letac. G. : A characterization of the Wishart exponential families by an invariance property. J. 

Theoret. Probab., 2(1):71{86, 1989

Letac, G.: Lectures on Natural Exponential Families and their Variance Functions, Instituto De 

Matematica Pura E Aplicada, 1992

Letac, G. : Les familles exponentielles statistiques invariantes par les groupes du Cône et du 

paraboloïde de révolution, Journal of Applied Probability, Vol. 31, Studies in Applied Probability, pp. 

71-95, 1994

Letac, G.; Wesolowski, J. : Why Jordan Algebras are Natural in Statistics: Quadratic Regression

Implies Wishart Distributions. Bull. Soc. math. France 139 (1), p. 129–144, 2011
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Travaux précurseurs de Muriel Casalis
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NEF (Natural Exponential Families): Letac & Casalis

▌ Let       a vector space of finite size,        its dual.             Duality braket with

.        Positive Radon measure on     , Laplace transform is :

▌ Transformation              defined on

▌ Natural exponential families are given by:

▌ Injective function (domian of means): 

▌ And the inverse function:

▌ Covariance operator:  
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NEF (Natural Exponential Families): Letac & Casalis

▌ Measure generetad by a familly :

▌ Let       an exponential family of        generated by        and

with automorphisms of       and               , then the familly

is an exponential familly of      

generated by 

▌ Definition: An exponential familly is invariant by a group      (affine 

group of     ), if                                    : 

(the contrary could be false)
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NEF (Natural Exponential Families): Letac & Casalis

▌ Theorem (Casalis):  Let                      an exponential familly of      and        

affine group of      , then is invariant by      if and only:

▌ When is a linear subgroup,      is a character of       ,       could be

obtained by the help of Cohomology of Lie groups .
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NEF (Natural Exponential Families): Letac & Casalis

▌ If we define action of       on       by:

we can verify that: 

▌ the action       is an inhomogeneous 1-cocycle:                , let the set of all 

functions from to     ,                     called inhomogenesous n-cochains, 

then we can define the operators: 
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NEF (Natural Exponential Families): Letac & Casalis

▌ Let                                                                                , with inhomogneous

n-cocycles , the quotient                                                                   is the 

Cohomology Group  of        with value in       . We have:
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NEF (Natural Exponential Families): Letac & Casalis

▌ When the Cohomology Group                              then

Then if                     is an exponential familly invariant by      ,       verifies

▌ For all compact Group,                            and we can express 
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Bargmann parameterization of SU(1,1)

is isomorphic to   through the complex 

unitary matrix  :
(1,1)SU    2, 2,SL R Sp R

W
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Bargmann parameterization of SU(1,1)

If we observe that  , the isomorphism is given explicitely by:
1W JW iM  
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Bargmann parameterization of SU(1,1)

We can also make also a link with   of “1+2” pseudo-orthogonal matrices:

with

(2,1)SO
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Bargmann parameterization of SU(1,1)

The   matrix corresponds to any  :(2,1)SO (1,1)SU
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Bargmann parameterization of SU(1,1)

The properties of connectivity of   is described by its isomorphy with  

Using unimodular condition:

If   is fixed,   are constrained to define a one-sheeted revolution 

hyperboloid, with its circular waist in the  plane.

(2, )Sp R
(1,1)SU

2 2 2 2 2 21 1 1

with   and 

R I R I

R I R Ii i

     

     

       

   

I  , ,R I R  




227
Les Houches 27th-31st July 2020

Joint Structures and Common Foundations of Statistical Physics,

Information Geometry and Inference for Learning (SPIGL'20)

OPENOPEN

Bargmann parameterization of SU(1,1)

To  , we can associate the simply-connected universal covering group, 

using the maximal compact subgroup   and corresponding to the 

Iwasawa decomposition (factorization of a noncompact semisimple group into its 

maximal compact subgroup times a solvable subgroup).
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Bargmann parameterization of SU(1,1)

Bargmann has generalized this parameterization for  , more 

convenient but difficult to generalize to N dimensions. 

For                    , Bargmann has used :

For  , the Bargman, parameterization is given by this 

decom-position of a non-singular matrix into the product of an orthogonal and a 

positive definite symmetric matrix:

and                                              are described when   is counted modulo 
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