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Quick Summary

• Shape constraints: priors on the form (e.g. nonnegativity) to
– compensate lack of samples or excessive noise
– incorporate physical constraints in an optimization problem
• Guarantee constraint satisfaction in kernel regression in a “hard“ way?
• Define a strengthened problem through SOC constraints

Shape-constrained kernel regression

f̄ ∈ arg min
f ∈ Fk

L
(
(xn, yn, f (xn))n∈[N ]

)
+ Ω (‖f |k)

s.t. 0 ≤ Df (x), ∀x ∈ K.
• D is a differential operator of order s, K ⊂ Rd a compact set (e.g. [0, T ])
• Fk is an RKHS, i.e. Hilbert space of real-valued functions, e.g. W 2,2(Rd)

RKHSs are defined by a positive definite kernel k(·, ·) with, for k ∈ Cs,s,
the reproducing property: Df (x) = 〈f (·), Dxk(x, ·)〉Fk

ex: kσ(x,y) = exp
(
−‖x− y‖2

Rd/(2σ2)
)

klin(x,y) = 〈x,y〉Rd

Examples

• Kernel ridge regression with monotonicity constraint:

L(f ) := 1
N

∑
n∈[N ]

|yn − f (xn)|2 + λf‖f‖2
k, s.t. f ′(x) ≥ 0, ∀x ∈ [xl, xu]

• Joint quantile regression with non-crossing constraints, over {fq + bq}q∈[Q]

L (f ,b) = 1
N

∑
q∈[Q]

∑
n∈[N ]

lτq (yn − [fq(xn) + bq]) + λb‖b‖2
2 + λf

∑
q∈[Q]
‖fq‖2

k

s.t. fq+1(x) + bq+1 ≥ fq(x) + bq, ∀q ∈ [Q− 1], ∀x ∈ [xl, xu]d.

Idea

Soft way: discretize the shape constraint at {x̃m}m≤M ⊂ K
↪→ No guarantees out-of-samples!
Hard way: take instead δ > 0 and x s.t. ‖x− x̃m‖ ≤ δ

Df (x) = Df (x̃m) + 〈f (·), Dxk(x, ·)−Dxk(x̃m, ·)〉k
Df (x) ≥ Df (x̃m)− ‖f (·)‖k‖Dxk(x, ·)−Dxk(x̃m, ·)‖k
Df (x) ≥ Df (x̃m)− ‖f (·)‖k sup

{x | ‖x−x̃m‖≤δ}
‖Dxk(x, ·)−Dxk(x̃m, ·)‖k︸ ︷︷ ︸

ηK,m(δ)

For smooth kernels, δ → 0 gives ηK,m(δ)→ 0.

Geometrical intuition

Φ𝐷(𝐾) 

𝐾 
𝑥 𝑚 

δ 

𝜂 
𝐷𝑥𝑘𝑥 𝑚 

Φ𝐷 

Φ𝐷
−1 

Numerical Illustrations

Kernel Ridge Regression with monotone constraint
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(a) Toy data with Gaussian noise [1]

0 10 20 30 40 50

t (s)

-50

0

50

100

150

200

250

300

350

x 
(m

)

Noiseless trajectory
Noisy measurement
Constrained Reconstruction
Unconstrained Reconstruction

(b) Car data with traffic jam [2]

Joint Quantile Regression with non-crossing and increasing constraints
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(c) Engel’s law over household income [1]
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(d) Adding a concavity constraint [1]

Goal

• Add a buffer to the discretization (interior solution)
“0 ≤ Df (x), ∀x ∈ K“⇐ “ηK,m‖f (·)‖k ≤ Df (x̃m), ∀m ∈ [[1,M ]]“
↪→ This generates a SOC (second-order cone) constraint.

• Discuss geometrically the choice of ηK,m and {x̃m}m≤M
• Apply the method to various shape constraints
– Trajectory reconstruction under speed and inter-vehicular distance con-
straints
– Engel’s law in economics (non-crossing/monotone/concave quantile func-
tions)

Theoretical guarantees

Denote by vdisc the optimal value for the discretization (η = 0) and by vη that
of the SOC version
i) This finite number of SOC constraints is tighter than the infinite number
of affine constraints.

ii) Finite number of evaluations⇒ representer theorem (optimal solutions
have a finite expression)

iii) If L is µ-strongly convex, we have a computable bound

‖fη − f̄‖k ≤
√√√√2(vη − vdisc)

µf

Discussion

(i) This holds for given samples (optimization rather than statistical properties)
(ii) The representer theorem provides an equivalent finite-dimensional problem

depending on the number N of samples xn and M of virtual points x̃m
(iii) The smaller η = the smaller δ = the larger M = the costlier
(iv) The virtual points can be chosen among the samples (recycling)

Extensions

• SDP constraints (e.g. convexity for d ≥ 2): 0 4 Hess(f )(x)
• Vector-valued functions f : X→ RP

• Other applications: finance, control theory..
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