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Fisher Information Metric (FIM)

Consider a statistical model p(x |Θ) of order D. The FIM (Hotelling29,Rao45) I(Θ) =
(Iij) is defined by a D × D positive semi-definite matrix
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where l(Θ) = log p(x |Θ) denotes the log-likelihood.

I Any parametric learning is inside a corresponding parameter manifold MΘ

θ
TθMΘ: a tangent space with

a local inner product g(θ)

MΘ

a learning curve

I FIM gives an invariant Riemannian metric g(Θ) = I(Θ) for any loss function based on
standard f-divergence (KL, cross-entropy, . . . )

FIM of a Multilayer Perceptron (MLP)
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The FIM of a MLP has the following expression

g(Θ) = Ex∼p̂(Xn), y∼p(y | x ,Θ)
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where p̂(Xn) is the empirical distribution of the samples
Xn = {xi}ni=1, and li(Θ) = log p(y | xi , Θ) is the conditional
log-likelihood.
Consider a learning step on MΘ from Θ to Θ + δΘ. The step
size
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measures how much δΘ is statistically along ∂l
∂Θ.

Will δΘ make a significant change to the mapping x → y or not?

Natural Gradient

Consider minΘ∈MΘ
L(Θ). At Θt ∈MΘ, the target is to minimize wrt δΘ

L(Θt + δΘ)︸ ︷︷ ︸
Loss function

+
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Squared step size

≈ L(Θt) + δΘᵀ5 L(Θt) +
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2γ
δΘᵀg(Θt)δΘ,

giving a learning step
δΘt = −γ g−1(Θt)5 L(Θt)︸ ︷︷ ︸

natural gradient

I Equivalence with mirror descent (Raskutti & Mukherjee 2013)

Pros

I Invariant (intrinsic) gradient
I Not trapped in plateaus
I Achieve Fisher efficiency in online learning

Cons

I Too expensive to compute (no closed-form FIM; need matrix inversion)

Relative FIM (RFIM) — Informal Ideas

I Decompose the learning system into subsystems

I The subsystems are interfaced with each other through hidden variables hi

I Some subsystems are interfaced with the I/O environment through xi and yi

I Compute the subsystem FIM by integrating out its interface variables hi , so that
the intrinsics of this subsystem can be discussed regardless of the remaining parts

θ
(parameter vector)

log p(r |θ,θf )
(likelihood scalar)

Given θf , how sensitive is r wrt tiny movements of θ?

RFIM – Formal Definition

Given θf (the reference), the Relative Fisher Information Metric (RFIM) of θ wrt h (the
response) is

gh (θ |θf ) = Ep(h |θ,θf )
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or simply gh (θ).

I RFIM includes FIM as a special case.

I RFIM is dynamic wrt the reference θf

A Dynamic Geometry
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I As the interface hidden variables hi are changing, the subsystem geometry is not absolute
but is relative to its reference variables provided by adjacent subsystems

RFIM of One tanh Neuron

Consider a neuron with input x , weights w , a hyperbolic tangent activation function, and a
stochastic output y ∈ {−1, 1}, given by

p(y = 1) =
1 + tanh(wᵀx̃)

2
, tanh(t) =

exp(t)− exp(−t)

exp(t) + exp(−t)
.

x̃ = (xᵀ, 1)ᵀ denotes the augmented vector of x

g y(w | x) = νtanh(w , x)x̃ x̃ᵀ, νtanh(w , x) = sech2(wᵀx̃) = 1− tanh2(wᵀx̃).

Meaning: The RFIM has a large magnitude on the “learning zone” of the neuron.

A List of RFIMs

Subsystem the RFIM gy(w )
A tanh neuron sech2(wᵀx̃)x̃ x̃ᵀ

A sigm neuron sigm(wᵀx̃) [1− sigm(wᵀx̃)] x̃ x̃ᵀ

A relu neuron
[
ι + (1− ι)sigm

(
1−ι
ω wᵀx̃

)]2 x̃ x̃ᵀ

A elu neuron

{
x̃ x̃ᵀ if wᵀx̃ ≥ 0

(α exp(wᵀx̃))2 x̃ x̃ᵀ if wᵀx̃ < 0
A linear layer diag [x̃ x̃ᵀ, · · · , x̃ x̃ᵀ]

A non-linear layer diag [νf (w1, x̃)x̃ x̃ᵀ, · · · , νf (wm, x̃)x̃ x̃ᵀ]

A soft-max layer


(η1 − η2

1)x̃ x̃ᵀ −η1η2x̃ x̃ᵀ · · · −η1ηmx̃ x̃ᵀ

−η2η1x̃ x̃ᵀ (η2 − η2
2)x̃ x̃ᵀ · · · −η2ηmx̃ x̃ᵀ

... ... . . . ...
−ηmη1x̃ x̃ᵀ −ηmη2x̃ x̃ᵀ · · · (ηm − η2

m)x̃ x̃ᵀ

 .
Two layers see the paper.

Relative Natural Gradient Descent (RNGD)

For each subsystem,

θt+1 ← θt − γ ·
(
ḡh(θt |θf )

)−1︸ ︷︷ ︸
inverse RFIM

· ∂L
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where
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1

n
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gh(θt |θif ).

By definition, RFIM is a function of the reference variables. ḡh(θt |θf ) is its expectation wrt
an empirical distribution of θf .

A Proof-of-concept
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I MLP with shape 784-80-80-80-10

I relu activation

I Mini-batch size 50

I No dropout

I L2 regularization

I Maintain an exponential moving average of the
RFIM

I Recompute the inverse RFIM every 100
mini-batchs

I PLAIN: a plain MLP

I BNA: a MLP with batch normalization
Observations

I RNGD achieved sharper learning curve in terms of
# iterations

I The computation cost of each epoch is several
times more expensive

I RNGD can give better local optima

Conclusion

I FIM is just a special case of RFIM, where the subsystem is the whole system

I By looking at smaller subsystems, RFIM can have simpler closed-form expressions

I Unlike NGD, RNGD can be implemented without approximation

I RFIM provides an accurate terminalogy to support feature whitening, natural neural
networks, etc.
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