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Fisher Information Metric (FIM)

Consider a statistical model p(x | ®) of order D. The FIM (Hotelling29,Ra045) Z(©) =
(Z;) is defined by a D x D positive semi-definite matrix
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where /(©®) = log p(x | ®) denotes the log-likelihood.
» Any parametric learning is inside a corresponding parameter manifold Mg
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» FIM gives an invariant Riemannian metric g(®) = Z(©) for any loss function based on
standard f-divergence (KL, cross-entropy, ... )

S .
# a learning curve

FIM of a Multilayer Perceptron (MLP)
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The FIM of a MLP has the following expression
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Consider a learning step on Mg from ® to ® + 0®. The step
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measures how much 00 is statistically along (%.

Will 0® make a significant change to the mapping x — y or not?
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Natural Gradient

Consider mingeq, L(®). At ©; € Mg, the target is to minimize wrt /©
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Squared step size
giving a learning step
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natural gradient

» Equivalence with mirror descent (Raskutti & Mukherjee 2013)

Pros

» Invariant (intrinsic) gradient
» Not trapped in plateaus
» Achieve Fisher efficiency in online learning

Cons

» Too expensive to compute (no closed-form FIM; need matrix inversion)

Relative FIM (RFIM) — Informal Ideas

» Decompose the learning system into subsystems
» The subsystems are interfaced with each other through hidden variables h;
» Some subsystems are interfaced with the 1/O environment through x; and y;

» Compute the subsystem FIM by integrating out its interface variables h;, so that
the intrinsics of this subsystem can be discussed regardless of the remaining parts
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RFIM — Formal Definition

Given O (the reference), the Relative Fisher Information Metric (RFIM) of @ wrt h (the
response) is
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or simply g (0).
» RFIM includes FIM as a special case.
» RFIM is dynamic wrt the reference O¢

Contact:

Frank Nielsen™

*Sony CSL

A Dynamic Geometry
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» As the interface hidden variables h; are changing, the subsystem geometry is not absolute

but is relative to its reference variables provided by adjacent subsystems

RFIM of One tanh Neuron

Consider a neuron with input x, weights w, a hyperbolic tangent activation function, and a
stochastic output y € {—1,1}, given by

1 + tanh(wTX)
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X = (xT,1)T denotes the augmented vector of x

exp(t) — exp(—t)
exp(t) + exp(—t)

ply =1) = tanh(t) =

g/ (W | x) = Veann(W, X)XXT,  Veamn(wW, x) = sech?(wTX) = 1 — tanh?(wTX).

Meaning: The RFIM has a large magnitude on the “learning zone" of the neuron.

A List of RFIMs

Subsystem the RFIM g¥(w)

A tanh neuron sech?(wTX)XXT
A sigm neuron sigm(wTX)|[1l — sigm(wTXx)] XXT

A relu neuron [L + (1 —¢)sigm (%WT)?)}Q)?)?T

Aol od if wix >0
neuron

o O (avexp(WTX))* %XT if wTx < 0

A linear layer diag [XXT, .- , XXT]
A non-linear layer diag [vr(wy, X)XXT,-- - ve(Wpy,, X)XXT]
—77177m>?5?T
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(1 — Nf)XXT  —mipXXT

A soft-max layer —emXXT  (mp — n3)XXT -+

| XXT = pRXT e (N — n3)RXT

Two layers see the paper.

Relative Natural Gradient Descent (RNGD)

For each subsystem,
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By definition, RFIM is a function of the reference variables. g"(8; | 8y) is its expectation wrt
an empirical distribution of Oy.

A Proof-of-concept
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Conclusion

» FIM is just a special case of RFIM, where the subsystem is the whole system

» By looking at smaller subsystems, RFIM can have simpler closed-form expressions
» Unlike NGD, RNGD can be implemented without approximation

» RFIM provides an accurate terminalogy to support feature whitening, natural neural
networks, etc.
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