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Abstract. We first introduce the class of strictly quasiconvex and
strictly quasiconcave Jensen divergences which are asymmetric distances,
and study some of their properties. We then define the strictly quasicon-
vex Bregman divergences as the limit case of scaled and skewed quasicon-
vex Jensen divergences, and report a simple closed-form formula which
shows that these divergences are only pseudo-divergences at countably
many inflection points of the quasiconvex generators. To remedy this
problem, we propose the δ-averaged quasiconvex Bregman divergences
which integrate the pseudo-divergences over a small neighborhood in
order obtain a proper divergence. The formula of δ-averaged quasicon-
vex Bregman divergences extend even to non-differentiable strictly qua-
siconvex generators. These quasiconvex Bregman divergences between
distinct elements have the property to always have one orientation finite
while the reverse orientation is infinite. We show that these quasiconvex
Bregman divergences can also be interpreted as limit cases of general-
ized skewed Jensen divergences with respect to comparative convexity by
using power means. Finally, we illustrate how these quasiconvex Bregman
divergences naturally appear as equivalent divergences for the Kullback-
Leibler divergences between probability densities belonging to a same
parametric family of distributions with nested density supports. AQ1

1 Introduction, Motivation, and Contributions

A dissimilarity D(O,O′) is a measure of the deviation of an object O′ from a
reference object O (i.e., DO(O′) := D(O,O′)) which satisfies the following two
basic properties:

• Non-negativity property: D(O,O′) ≥ 0,∀O,O′

• Property of the indiscernibles: D(O,O′) = 0 if and only if O = O′.

In other words, a dissimilarity D(O,O′) satisfies D(O,O′) ≥ 0 with equal-
ity if and only if O = O′. A pseudo-dissimilarity is a measure of deviation for
which the non-negativity property holds but not necessarily the law of the indis-
cernibles [35]. The objects O and O′ can be vectors, probability distributions,
random variables, strings, graphs, etc. In general, a dissimilarity may not be
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2 F. Nielsen and G. Hadjeres

symmetric, i.e., we may potentially have D(O,O′) �= D(O′, O). In that case, the
dissimilarity is said to be oriented, and we consider the following two reference
orientations of the dissimilarity: the forward ordinary dissimilarity D(O : O′)
and its associated reverse dissimilarity Dr(O : O′) := D(O′ : O). Notice that we
used the ’:’ notation instead of the usual comma delimiter ’,’ between the dis-
similarity arguments to emphasize that the dissimilarity may be asymmetric. In
the literature, a dissimilarity is also commonly called a divergence [3] although
several additional meanings may be associated to this term like a dissimilarity
between probability distributions instead of vectors (e.g., the Kullback-Leibler
divergence [13] in information theory) or like a notion of smoothness (e.g., a
C3 contrast function in information geometry [3]). A dissimilarity may also be
loosely called a distance although this may convey to mathematicians in some
contexts the additional notion of a dissimilarity satisfying the metric axioms
(non-negativity, law of the indiscernibles, symmetry and triangular inequality).

The Bregman divergences [10,11] were introduced in operations research, and
are widely used nowadays in machine learning and information sciences. For a
strictly convex and smooth generator F , called the Bregman generator, we define
the corresponding Bregman divergence between parameter vectors θ and θ′ as:

BF (θ : θ′) := F (θ) − F (θ′) − (θ − θ′)�∇F (θ′). (1)

Bregman divergences are always finite when θ and θ′ both belong an open convex
set Θ, and generalize many common distances [5], including the Kullback-Leibler
(KL) divergence and the squared Euclidean and squared Mahalanobis distances.
(Notice that although the Mahalanobis distance is a metric, the squared Maha-
lanobis distance is not a metric.) Furthermore, the KL divergence between two
probability densities belonging to a same exponential family [5,6] amount to a
reverse Bregman divergence between the corresponding parameters when setting
the Bregman generator to be the cumulant function of the exponential family [4].
Moreover, a one-to-one correspondence (bijection) between regular exponential
families [6] and the so-called class of “regular Bregman divergences” was reported
in [5] and used for learning statistical mixtures showing that the expectation-
maximization (EM) algorithm is equivalent to a Bregman clustering algorithm
with soft membership. Bregman divergences have been extended to many non-
vector data types like matrix arguments [36] or functional arguments [17].

In this chapter, we consider defining the notion of Jensen divergences [29]
for strictly quasiconvex or strictly quasiconcave generators, and we investigate
the induced notion of Bregman divergences. We term them quasiconvex Breg-
man divergences (and omit to prefix it by ‘strictly’ for sake of brevity). We then
establish a connection between the KL divergence between parametric families
of densities with nested density supports and these quasiconvex Bregman diver-
gences.

We summarize our main contributions as follows:

• By using quasiconvex generators instead of convex generators (i.e., relaxing
convex functions to quasiconvex functions), we define for a scalar α ∈ (0, 1)
the α-skewed quasiconvex Jensen divergences (Definition 1) and derived
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thereof the quasiconvex Bregman divergences in the limit case of α → 1
or the reverse quasiconvex Bregman divergences when α → 0 (Definition 3
and Theorem 1). The quasiconvex Bregman divergences turn out to be only
pseudo-divergences at inflection points of the generator. Since this can hap-
pen only at countably many points, we still loosely call them quasiconvex
Bregman divergences. Then we integrate the quasiconvex Bregman (pseudo-)
divergence over a small neighborhood and obtain a δ-averaged quasiconvex
Bregman divergence in Sect. 3.2. The δ-averaged quasiconvex Bregman diver-
gence are also well-defined for strictly quasiconvex but not differentiable
generators. Quasiconvex Bregman divergences between distinct parameters
always have one orientation finite while the reverse orientation evaluates to
infinity.

• We show that quasiconvex Jensen divergences and quasiconvex Bregman
divergences can be reinterpreted as generalized Jensen and Bregman diver-
gences with comparative convexity [26,33] using power means in the limit case
(Sect. 2.3 and Sect. 2.3).

• We exhibit some parametric families of probability distributions with strictly
nested density supports such that the Kullback-Leibler divergences between
them amount to equivalent quasiconvex Bregman divergences (Sect. 4).

The paper is organized as follows:
Section 2 defines the quasiconvex and quasiconcave difference distances by

analogy to Jensen difference distances [38] (also called Burbea-Rao diver-
gences [29]), study some of their properties, and show how to obtain them as
generalized Jensen divergences [33] obtained from comparative convexity using
power means. Henceforth their name: quasiconvex Jensen divergences. When the
generator is quasilinear instead of quasiconvex, we call them quasilinear Jensen
divergences (qln Jensen divergences for short). We then define the quasiconvex
Bregman divergences in Sect. 3 as limit cases of scaled and skewed quasiconvex
Jensen divergences, and report a closed-form formula which highlights the fact
that one orientation of the distance is always finite while the reverse orientation
is always infinite (for divergences between distinct elements). Since the quasi-
convex Bregman divergences are only pseudo-divergences at inflection points,
we define the δ-averaged quasiconvex Bregman divergences in Sect. 3.2. We also
recover the formula by taking the limit case of power means Bregman divergences
that were introduced using comparative convexity [33].

In Sect. 4, we consider the problem of finding a parametric family of proba-
bility distributions for which the Kullback-Leibler divergence amount to a qua-
siconvex Bregman divergence. We illustrate one example showing that nested
supports of the densities ensure the property of having one orientation finite
while the other one is infinite. Finally, Sect. 5 concludes this chapter and hints
at applications perspectives of these quasiconvex Bregman divergences, including
flat center-based clustering [31] and hierarchical clustering [27].
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4 F. Nielsen and G. Hadjeres

2 Divergences Based on Inequality Gaps of Quasiconvex
or Quasiconcave Generators

2.1 Quasiconvex and Quasiconcave Difference Dissimilarities

In this work, a divergence or a distance D(θ : θ′) refers to a dissimilarity such
that D(θ : θ′) ≥ 0 with equality iff. θ = θ′. A pseudo-divergence or pseudo-
distance only satisfies the non-negativity property but not necessarily the law of
the indiscernibles of the dissimilarities.

Consider a function Q : Θ ⊂ R
D → R which satisfies the following “Jensen-

type” inequality [9] for any α ∈ (0, 1):

Q((θθ′)α) < max{Q(θ), Q(θ′)}, θ �= θ′ ∈ Θ ⊂ R, (2)
where (θθ′)α := (1−α)θ+αθ′ denotes the weighted linear interpolation of θ with
θ′, and Θ the parameter space. Function Q is said strictly quasiconvex [8,9,18,37]
as it relaxes the strict convexity inequality:

Q((θθ′)α) < (1 − α)Q(θ) + αQ(θ′) ≤ max{Q(θ), Q(θ′)}. (3)

Let Q denote the space of such strictly quasiconvex real-valued function, and
let C denote the space of strictly convex functions. We have C ⊂ Q: Any strictly
convex function or any strictly increasing function is quasiconvex, but not nec-
essarily the converse: Some examples of quasiconvex functions which are not
convex are Q(θ) =

√
θ, Q(θ) = θ3, Q(θ, θ′) = log(θ2 + (θ′)2), etc. Decreas-

ing and then increasing functions are quasiconvex but may not be necessarily
smooth. Some concave functions like Q(θ) = log θ are quasiconvex. The sum
of quasiconvex functions are not necessarily quasiconvex (see also [7]). In the
same spirit that function convexity can be reduced to set convexity via the epi-
graph representation of the function, a function Q is quasiconvex if the level
set Lα := {x : Q(x) ≤ α} is (set) convex for all α ∈ R. When Q is univari-
ate, a quasiconvex function is also commonly called unimodal (i.e., decreasing
and then increasing function). Thus a multivariate quasiconvex function can
be characterized as being unimodal along each line of its domain. Figure 1 dis-
plays some examples of quasiconvex functions with one function that fails to
be quasiconvex. Notice that strictly monotonic functions which are both strictly
quasiconvex and strictly quasiconcave are termed strictly quasilinear. The ceil
function ceil(θ) = inf{z ∈ Z : z ≥ θ} is an example of quasilinear func-
tion (idem for the floor function). Another example, are the linear fractional
functions Qa,b,c,d(θ) = a�θ+b

c�θ+d
which are quasilinear functions on the domain

Θ = {θ : c�θ + d > 0}. We denote by L ⊂ Q the set of strictly quasilinear
functions, and by H the set of strictly quasiconcave functions.

Definition 1 (Quasiconvex difference distance). The quasiconvex differ-
ence distance (or qcvx distance for short) for α ∈ (0, 1) is defined as the inequality
difference gap of Eq. 2

qcvxJα
Q(θ : θ′) := max{Q(θ), Q(θ′)} − Q((θθ′)α) ≥ 0, (4)

= max{Q(θ), Q(θ′)} − Q((1 − α)θ + αθ′)). (5)
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Quasiconvex Jensen Divergences and Quasiconvex Bregman Divergences 5

Fig. 1. The first three functions (from left to right) are quasiconvex because any level
set is convex, but the last function is not quasiconvex because the dotted line intersects
the function in four points (and therefore the level set is not convex). The first function
is convex, the second function is quasiconvex but not convex (a chord may intersect the
function in more than two points), the third function is monotonous and here concave
(quasilinear)).

By definition, the quasiconvex difference distance is a dissimilarity satisfying
qcvxJα

Q(θ : θ′) = 0 iff. θ = θ′ when the generator Q is strictly quasiconvex (see
Eq. 2).

Remark 1. Notice that we could also have defined a log-ratio gap [35] as a dis-
similarity:

qcvxJLα
Q(θ : θ′) := − log

(
Q((θθ′)α)

max{Q(θ), Q(θ′)}
)

. (6)

However, in that case we should have required the extra condition that the
generator does not vanish in the domain, i.e., Q(θ) �= 0 for any θ ∈ Θ.

Property 1. Let a > 0 and b ∈ R, and define Qa,b(θ) = aQ(θ) + b. Functions
Qa,b are quasiconvex, and qcvxJα

Qa,b
(θ : θ′) = a qcvxJα

Q(θ : θ′).

Similarly, we can characterize a strictly quasiconcave real-valued function H ∈
H : Θ ⊂ R

D → R by the following inequality for α ∈ (0, 1):

H((θθ′)α) > min{H(θ),H(θ′)}, θ �= θ′ ∈ Θ ⊂ R
D. (7)

This allows one to define the quasiconcave difference distance (or qccv distance
for short):

Definition 2 (Quasiconcave difference distance). For H a quasiconcave
function and α ∈ (0, 1), we define the quasiconcave distance as:

qccvJα
H(θ : θ′) := H((θθ′)α) − min{H(θ),H(θ′)}, (8)

= H((1 − α)θ + αθ′) − min{H(θ),H(θ′)} (9)

Similarly, we have qccvJα
Ha,b

(θ : θ′) = a qccvJα
H(θ : θ′) for a > 0 and b ∈ R.

Now, observe that for any a, b ∈ R, we have1 min{a, b} = −max{−a,−b} (or
equivalently max{a, b} = −min{−a,−b}). Thus it follows the following identity:
1 Indeed, max{a, b} = a+b

2
+ 1

2
|b − a| = −(−a−b

2
− 1

2
|b − a|) = −(−a−b

2
− 1

2
| − b + a|) =

− min{−a, −b}.
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6 F. Nielsen and G. Hadjeres

Property 2. A quasiconcave difference distance with quasiconcave generator H
is equivalent to a quasiconvex difference distance for the quasiconvex generator
Q = −H:

qccvJα
H(θ : θ′) = qcvxJα

−H(θ : θ′), qcvxJα
Q(θ : θ′) = qccvJα

−Q(θ : θ′). (10)

Proof.

qccvJα
H(θ : θ′) = H((θθ′)α) − min{H(θ),H(θ′)}, (11)

= max{−H(θ),−H(θ′)} − (−H((θθ′)α)), (12)
= qcvxJα

−H(θ : θ′). (13)

��
Therefore, we consider without loss of generality quasiconvex difference dis-

tances in the reminder.

2.2 Relationship of Quasiconvex Difference Distances with Jensen
Difference Distances

Since for any a, b ∈ R, we have max(a, b) = a+b
2 + 1

2 |b − a|, min(a, b) = a+b
2 −

1
2 |b − a| and max(a, b) − min(a, b) = |b − a|, we can rewrite Eq. 4 to get

qcvxJα
Q(θ : θ′) =

Q(θ) + Q(θ′)
2

+
1

2

∣
∣Q(θ) − Q(θ′)

∣
∣ − Q((θθ′)α), (14)

= eJα
Q(θ : θ′) +

1

2

∣
∣Q(θ) − Q(θ′)

∣
∣ + Q(θ)

(

α − 1

2

)

+ Q(θ′)
(

1

2
− α

)

,

(15)

where

eJα
Q(θ, θ′) := (Q(θ)Q(θ′))α − Q ((θθ′)α) , (16)

is called the extended Jensen divergence, a Jensen-type divergence extended to
quasiconvex generators instead of ordinary convex generators.

Property 3 (Upperbounded the extended Jensen divergence by qcvxJα
Q). We have:

eJα
Q(θ : θ′) ≤ qcvxJα

Q(θ : θ′) (17)

since (Q(θ)Q(θ′))α ≤ max{Q(θ), Q(θ′)}. In particular, when Q = F is strictly
convex, we have 0 ≤ Jα

F (θ : θ′) ≤ qcvxJα
F (θ : θ′).

Notice that eJα
Q(θ, θ′) ≥ 0 when Q is strictly convex, but may be negative

when only quasiconvex. For example, Q(θ) = log θ is a quasiconvex and concave
function, and therefore eJα

Q(θ, θ′) ≤ 0.
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Quasiconvex Jensen Divergences and Quasiconvex Bregman Divergences 7

When α = 1
2 , we get the following identity:

Property 4 (Regularization of extended Jensen divergences).

qcvxJQ(θ : θ′) =
Q(θ) + Q(θ′)

2
+

1
2
|Q(θ) − Q(θ′)| − Q

(
θ + θ′

2

)
, (18)

= eJQ(θ, θ′) +
1
2
|Q(θ) − Q(θ′)|, (19)

where

eJQ(θ, θ′) :=
Q(θ) + Q(θ′)

2
− Q

(
θ + θ′

2

)
, (20)

is an extension of the Jensen divergence [12,38] to a quasiconvex generator Q.

Thus when the generator is convex, we can interpret the quasiconvex diver-
gence as a �1-regularization of the ordinary Jensen divergence. When the gen-
erator Q is not convex, beware that eJQ(θ, θ′) may be negative but we always
have eJQ(θ, θ′) ≥ − 1

2 |Q(θ) − Q(θ′)|.
Similarly, when the generator H is strictly quasiconcave, we rewrite the qua-

siconvex difference distance as

qccvJH(θ : θ′) = H

(
θ + θ′

2

)
− H(θ) + H(θ′)

2
+

1
2
|H(θ) − H(θ′)|, (21)

= eJ−H(θ, θ′) +
1
2
|H(θ) − H(θ′)|. (22)

2.3 Quasiconvex Difference Distances from the Viewpoint
of Comparative Convexity

In [33], a generalization of the skewed Jensen divergences with respect to compar-
ative convexity [26] is obtained using a pair of weighted means. A mean between
two reals x and y belonging to an interval I ⊂ R is a bivariate function M(x, y)
such that

min{x, y} ≤ M(x, y) ≤ max{x, y}. (23)

That is, a mean satisfies the in-betweenness property (see [26], p. 328). A
weighted mean Mα for α ∈ [0, 1] can always be built from a mean by using
the unique dyadic expansions of real numbers [26]. That is, we define a weighted
mean M(x, y;w) := M(x, y;w, 1 − w) for a weight w ∈ [0, 1] as follows: Set
M(x, y; 1, 0) = x, M(x, y; 0, 1) = y, and M(x, y; 1

2 , 1
2 ) := M(x, y). Then we

define the weighted means M
(
x, y; 3

4 , 1
4

)
:= M(M(x, y), x) and M

(
x, y; 1

4 , 3
4

)
:=

M(M(x, y), y), and so on by induction for dyadic numbers with finite binary rep-
resentations. Thus we can define the weighted mean M(p, q;w) for w = i

2k with
i ∈ {0, . . . , 2k}. For example, when k = 3, we get the following weighted means:
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8 F. Nielsen and G. Hadjeres

M

(
p, q;

0
8

= 0
)

= q

M

(
p, q;

1
8

)
= M(M(M(p, q), q), q)

M

(
p, q;

2
8

=
1
4

)
= M(M(p, q), q)

M

(
p, q;

3
8

)
= M(M(M(p, q), p), q)

M

(
p, q;

4
8

=
1
2

)
= M(p, q)

M

(
p, q;

5
8

)
= M(M(M(p, q), q), p)

M

(
p, q;

6
8

=
3
4

)
= M(M(p, q), p)

M

(
p, q;

7
8

)
= M(M(M(p, q), p), p)

M

(
p, q;

8
8

= 1
)

= p

Let w =
∑∞

i=1
di

2i be the unique dyadic expansion of the real w ∈ (0, 1) where
the di’s are binary digits (i.e., di ∈ {0, 1}). Finally, we define the weighted mean
M(x, y, w, 1 − w) of two positive reals p and q for a real weight w ∈ (0, 1) as

M(x, y, w, 1 − w) := lim
n→∞ M

(
x, y,

n∑
i=1

di

2i
, 1 −

n∑
i=1

di

2i

)
. (24)

Consider two weighted means Mα and Nα.
A function F is said (M,N) convex if and only if we have

Nα(F (θ), F (θ′)) ≥ F (Mα(θ, θ′)), θ, θ′ ∈ Θ. (25)

We recover the ordinary convexity (Jensen’s midpoint convexity) when Mα =
Nα = Aα, where Aα(x, y) = (1 − α)x + αy is the weighted arithmetic mean.

We can define the α-skewed (M,N)-Jensen divergence as:

JM,N
F,α (θ : θ′) := Nα(F (θ), F (θ′)) − F (Mα(θ, θ′)). (26)

By definition, JM,N
F,α (θ : θ′) ≥ 0 when F is a (M,N)-strictly convex function.

A quasi-arithmetic mean [26] is defined for a continuous strictly increasing
function f : I ⊂ R → J ⊂ R as:

Mf (p, q) := f−1

(
f(p) + f(q)

2

)
. (27)
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Quasiconvex Jensen Divergences and Quasiconvex Bregman Divergences 9

These quasi-arithmetic means are also called Kolmogorov-Nagumo-de Finetti
means [14,22,25]. Without loss of generality, we assume strictly increasing func-
tions instead of monotonic functions since M−f = Mf . By choosing f(x) = x,
f(x) = log x or f(x) = 1

x , we recover the Pythagorean arithmetic, geo-
metric, and harmonic means, respectively. Choosing fLSE(x) = exp(x) (with
f−1
LSE(x) = log(x)), we get a mean related to the log-sum-exp function LSE [34]:

MfLSE(p, q) = log ep+eq

2 = LSE(p, q) − log 2, where

max{p, q} < LSE(p, q) := log(ep + eq) ≤ max{p, q} + log 2.

Now, consider the family of power means for x, y > 0:

P0(x, y) :=
√

xy, (28)

and

Pδ(x, y) :=
(

xδ + yδ

2

) 1
δ

, δ �= 0. (29)

These means fall in the class of quasi-arithmetic means obtained for fδ(x) = xδ

for δ �= 0 with I = J = (0,∞), and include in the limit cases the maximum
and minimum values: limδ→+∞ Pδ(a, b) = max{a, b} and limδ→−∞ Pδ(a, b) =
min{a, b}.

The power mean Jensen divergence [33] is defined as a special case of the
(M,N)-Jensen divergence by:

JPδ

F (θ : θ′) := JA,Pδ

F (θ : θ′) = Pδ(F (θ), F (θ′)) − F ((θθ′)α), (30)

for a (A,Pδ) strictly convex generator F .
Let us now observe that the quasiconvex difference distance is a limit case of

power mean Jensen divergences:

Property 5 (qcvxJQas a limit case of power mean Jensen divergences). We have

qcvxJQ(θ : θ′) = lim
δ→∞

JPδ

Q (θ : θ′). (31)

Notice that a strictly quasiconvex function Q is interpreted as a (A,max)-
strictly convex function in comparative convexity, a limit case of (A,Pδ)-
convexity when δ → ∞. From now on, we term the quasiconvex difference
distance the quasiconvex Jensen divergence.

3 Bregman Divergences for Quasiconvex Generators

3.1 Quasiconvex Bregman Divergences as Limit Cases
of Quasiconvex Jensen Divergences

Recall that for a strictly quasiconvex generator Q, define the α-skewed quasicon-
vex distance for α ∈ (0, 1) as

qcvxJα
Q(θ : θ′) := max{Q(θ), Q(θ′)} − Q((θθ′)α). (32)
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10 F. Nielsen and G. Hadjeres

We have
qcvxJα

Q(θ : θ′) ≥ 0, (33)

with equality if and only if θ = θ′. Notice that we do not require smoothness [20]

of Q, and qcvxJQ = qcvxJ
1
2
Q is symmetric. For an asymmetric divergence D(θ : θ′),

denote Dr(θ : θ′) = D(θ′ : θ) the reverse divergence.
By analogy to Bregman divergences [5] being interpreted as limit cases of

scaled and skewed Jensen divergences [29,41]:

lim
α→1−

1
α(1 − α)

Jα
F (θ : θ′) = BF (θ : θ′), (34)

lim
α→0+

1
α(1 − α)

Jα
F (θ : θ′) = Br

F (θ : θ′) = BF (θ′ : θ). (35)

Let us define the following divergence:

Definition 3 (Quasiconvex Bregman pseudo-divergence). For a strictly
quasiconvex generator Q ∈ L, we define the quasiconvex Bregman pseudo-
divergence as

qcvxBQ(θ : θ′) := lim
α→1−

1
α(1 − α)

qcvxJα
Q(θ : θ′). (36)

As it will be shown below, we get only a pseudo-divergence in the limit case.

Theorem 1 (Formula for the quasiconvex Bregman pseudo-
divergence). For a strictly quasiconvex and differentiable generator Q, the
quasiconvex Bregman pseudo-divergence is

qcvxBQ(θ : θ′) =
{−(θ − θ′)�∇Q(θ′) if Q(θ) ≤ Q(θ′)

+∞ otherwise (i.e., Q(θ) > Q(θ′)). (37)

Proof. By definition, we have

qcvxBQ(θ : θ′) = lim
α→1−

1
α(1 − α)

(max{Q(θ), Q(θ′)} − Q((θθ′)α)) .

Applying a first-order Taylor expansion to Q ((θθ′)α), we get

Q ((θθ′)α)) �α→1 Q(θ′) − (1 − α)(θ − θ′)�∇Q(θ′). (38)

Thus we have

qcvxBQ(θ : θ′)

= lim
α→1−

1

α(1 − α)

(

max{Q(θ), Q(θ′)} − Q(θ′) − (1 − α)(θ − θ′)�∇Q(θ′)
)

. (39)
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Quasiconvex Jensen Divergences and Quasiconvex Bregman Divergences 11

Consider the following two cases:

• Case max{Q(θ), Q(θ′)} = Q(θ′): That is, Q(θ′) ≥ Q(θ). Then it follows that

qcvxBQ(θ : θ′) = lim
α→1−

1
α(1 − α)

(−(1 − α)(θ − θ′)�∇Q(θ′)
)
, (40)

= −(θ − θ′)�∇Q(θ′). (41)

• Case max{Q(θ), Q(θ′)} = Q(θ): That is, Q(θ) ≥ Q(θ′). Then we have

qcvxBQ(θ : θ′) = lim
α→1−

1
α(1 − α)

(
Q(θ) − Q(θ′) − (1 − α)(θ − θ′)�∇Q(θ′)

)
.

We have limα→1− Q(θ) − Q(θ′) − (1 − α)(θ − θ′)�∇Q(θ′) = Q(θ) − Q(θ′) =
ΔQ(θ : θ′) that is finite and different from 0 when θ �= θ′, and therefore
limα→1− 1

α(1−α)ΔQ(θ : θ′) = +∞.

Let us now prove the axiom of non-negativity and disprove the law of
the indiscernibles at inflection points for the quasiconvex Bregman pseudo-
divergences.

Fig. 2. An example of a strictly quasiconvex function Q with (countably) many inflec-
tion points (at locations θi’s) for which the derivative vanishes Q′(θi) = 0 and the
second derivative Q′′ changes sign at the θi’s.

• Law of the indiscernibles: Clearly, qcvxBQ(θ : θ) = 0 for all θ ∈ Θ. So consider
θ �= θ′, and qcvxBQ(θ : θ′) = −∇Q(θ′)�(θ − θ′) = 0 for Q(θ′) ≥ Q(θ). It is
enough to consider the 1D case, by considering the divergence restricted to
the line passing through θ and θ′ intersected by the domain Θ. We may have
countably many inflection points θ′ for which Q′(θ′) = 0. At those inflection
points, we may find θ �= θ′ such that qcvxBQ(θ : θ′) = 0. Thus the quasiconvex
Bregman divergence does not satisfy the law of the indiscernibles. Figure 2
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12 F. Nielsen and G. Hadjeres

displays an example of such a quasiconvex function with a few inflection
points.
For example, consider the strictly quasiconvex generator Q(x) = x3, with
θ < 0 and θ′ = 0. We have:

qcvxJα
Q(θ : θ′) = max{Q(θ), Q(θ′)} − Q((1 − α)θ + αθ′) = −(1 − α)3θ3 > 0.

(42)
Defining the corresponding quasiconvex Bregman divergence by taking the
limit of scaled quasiconvex Jensen divergence yields

qcvxBQ lim
α→1

1
α(1 − α)

qcvxJα
Q(θ : θ′) = lim

α→1−
− (1 − α)2

α
θ3 = 0. (43)

Thus the quasiconvex Bregman divergence is only a pseudo-divergence at
countably many inflection points. Section 3.2 will overcome this problem by
introducing the δ-averaged quasiconvex Bregman divergence.

• Non-negativity follows from a classic theorem of quasiconvex analysis which
reports a first-order condition for a function to be quasiconvex2: A C1 func-
tion Q : Θ ⊂ R

D → R is quasiconvex iff. the following property holds (see
Theorem 21.14 of [39] and §3.4.3 of [9]):

Q(θ′) ≥ Q(θ) ⇒ ∇Q(θ′)(θ − θ′) ≤ 0. (44)

That is equivalent to ∇Q(θ′)�(θ − θ′) ≤ 0 or qlnBQ(θ : θ′) = −∇Q(θ′)�(θ −
θ′) ≥ 0.
Notice that when Q = F is strictly convex and differentiable, then the prop-
erty also follows from the non-negativity of the corresponding Bregman diver-
gence BF (θ : θ′) ≥ 0 and F (θ′) ≥ F (θ):

F (θ) − F (θ′) − (θ − θ′)�∇F (θ′) ≥ 0, (45)
−(θ − θ′)�∇F (θ′)︸ ︷︷ ︸

qcvxBF (θ:θ′)

≥ F (θ′) − F (θ) ≥ 0. (46)

��

Notice that −(θ − θ′)�∇Q(θ′) = (θ′ − θ)�∇Q(θ′) ≥ 0 when Q(θ) ≤ Q(θ′).
Figure 3 illustrates the quasiconvex Bregman divergence for a strictly quasicon-
vex generator which is strictly concave and has no inflection point.

An interesting property is that if qcvxBQ(θ : θ′) < ∞ for θ �= θ′ then nec-
essarily qcvxBQ(θ′ : θ) = ∞, and vice-versa (when both parameters are not at
inflection points). The forward qcvxBQ and reverse qcvxBr

Q quasiconvex Bregman

2 By analogy to a classic second-order condition for a strictly convex and differentiable
function F to be convex: To have its Hessian ∇2 positive-definite (Alexandrov’s
theorem). Similarly, the first-order condition for convexity of a function states that
a differentiable function F with convex domain is convex iff. F (θ) ≥ F (θ′) + (θ −
θ′)�∇F (θ′) from which we recover the Bregman divergence: BF (θ : θ′) = F (θ) −
F (θ′) − (θ − θ′)�∇F (θ′) ≥ 0.
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Quasiconvex Jensen Divergences and Quasiconvex Bregman Divergences 13

pseudo-divergences are both finite only when Q(θ) = Q(θ′) and then we have
qcvxBQ(θ : θ) = 0 or when one parameter is an inflection point.

Moreover, we have the following decomposition for a quasiconvex function
Q ∈ Q:

eBQ(θ : θ′) = Q(θ) − Q(θ′) + qcvxBQ(θ : θ′), (47)

when Q(θ) ≤ Q(θ′), where eBQ stands for the extended Bregman divergence, i.e.,
the Bregman divergence extended to a quasiconvex generator.

Fig. 3. Illustration of the quasiconvex Bregman divergence for a strictly quasilinear
function Q chosen to be concave (e.g. logarithmic type).

Remark 2 (Separability/non-separability of generators and divergences). When
the D-dimensional generator Q is separable, i.e., Q(θ) =

∑D
i=1 Qi(θi) where θ =

(θ1, . . . , θD) and the Qi’s are differentiable and quasiconvex univariate functions,
the quasiconvex Bregman divergence rewrites as

qcvxBQ(θ : θ′) =
{

−∑D
i=1(θi − θ′

i)Q
′
i(θ

′
i) if Q(θ) ≤ Q(θ′)

+∞ otherwise (Q(θ) > Q(θ′)).
(48)

Notice that the condition for the quasiconvex Bregman divergence to be
infinite is Q(θ) > Q(θ′), and not that there exists one index i ∈ {1, . . . , D}
such that Qi(θi) > Q(θ′

i). Thus, we have qcvxBQ(θ : θ′) �= ∑D
i=1

qlnBQi
(θi : θ′

i).
This is to contrast with Bregman divergences for which the separability of the
generator F (θ) =

∑D
i=1 Fi(θi) yields the separability of the divergence: BF (θ :

θ′) =
∑D

i=1 BFi
(θi : θ′

i).
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14 F. Nielsen and G. Hadjeres

3.2 The δ-averaged Quasiconvex Bregman Divergence

We shall overcome the problem of indiscernability for quasiconvex Bregman
pseudo-divergences:

qcvxBQ(θ : θ′) = (θ′ − θ)Q(θ′) for Q(θ′) ≥ Q(θ). (49)

Since the number of inflection points is at most countable for a strictly qua-
siconvex generator Q, we can integrate over a neighborhood of the parameters
to obtain a strictly positive divergence when θ′ �= θ.

Given a prescribed parameter δ > 0 (chosen to be small), we introduce the
δ-averaged quasiconvex Bregman divergence qcvxBδ

Q via the following definition:

qcvxBδ
Q(θ, θ′) :=

1
δ

∫ δ

0

qcvxBQ(θ + u : θ′ + u)du. (50)

This divergence is infinite if there exists u ∈]0, δ[ such that Q(θ + u) >
Q(θ′ + u). This δ-averaged quasiconvex Bregman divergence now satisfies the
law of the indiscernables.

When Q is differentiable, we obtain:

qcvxBδ
Q(θ, θ′) :=

1
δ

∫ δ

0

(θ′−θ)Q′(θ′+u)du = (θ′−θ)
(

Q(θ′ + δ) − Q(θ′)
δ

)
, (51)

when Q(θ′ + u) ≥ Q(θ + u) ∀0 ≤ u < δ.
Since Q is strictly quasiconvex, we can prove that the condition

Q(θ′ + u) ≥ Q(θ + u) ∀0 ≤ u < δ (52)

is in fact equivalent to

Q(θ′) ≥ Q(θ) and Q(θ′ + δ) ≥ Q(θ + δ). (53)

In 1D, a quasiconvex function is a decreasing then increasing function (i.e., a
unimodal function). It is trivial that Q(θ′) ≥ Q(θ) and Q(θ′ + δ) ≥ Q(θ + δ)
implies that Q(θ′ + u) ≥ Q(θ + u) ∀0 ≤ u < δ for monotonic functions. The
only remaining case is when θ′ lies on the decreasing part and θ on the increasing
part. If θ′ +δ also lies on the decreasing part, then since Q is decreasing between
θ′ and θ′ + δ we have

Q(θ′) ≥ Q(θ′ + u) ≥ Q(θ′ + δ) ∀0 ≤ u < δ, (54)

and, similarly,
Q(θ) ≤ Q(θ + u) ≤ Q(θ + δ) ∀0 ≤ u < δ, (55)

so that
Q(θ′ + u) ≥ Q(θ + u) ∀0 ≤ u < δ. (56)

Finally, if θ′ + δ lies on the increasing part of Q, since θ > θ′, we have
θ′ + δ < θ + δ so Q(θ′ + δ) < Q(θ + δ) which is a contradiction.
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Quasiconvex Jensen Divergences and Quasiconvex Bregman Divergences 15

Thus, the condition (52) for the finiteness of the integral (51) can only be
checked at the endpoints (Eq. (53)).

Using the same reasoning as before, we can double check that the rhs. of (51)
is indeed positive if conditions (Eq. (53)) are verified.

Also, the rhs. of (51) can also serve as the definition of the qcvxBδ
Q divergences,

even when the strictly quasiconvex function Q is not differentiable:

Definition 4 (δ-averaged quasiconvex Bregman divergence). For a pre-
scribed δ > 0 and a strictly quasiconvex generator Q not necessarily differen-
tiable, the δ-averaged quasiconvex Bregman divergence is defined by

qcvxBδ
Q(θ, θ′)

:=

{
1
δ
(θ′ − θ) (Q(θ′ + δ) − Q(θ′)) if Q(θ′ + u) ≥ Q(θ + u) ∀0 ≤ u < δ

+∞ otherwise
(57)

Let us report some examples of δ-averaged quasiconvex Bregman divergences:

• Q(x) = x.
qcvxBQ(θ : θ′) = (θ′ − θ)

θ′ + δ − θ′

δ
= θ′ − θ,

when θ′ ≥ θ, or +∞ otherwise.
• Q(x) = x2.

qcvxBQ(θ : θ′) = (θ′ − θ)(2θ′ + δ),

when |θ′| ≥ |θ| and θ′2 − θ2 + 2δ(θ′ − θ) ≥ 0, or +∞ otherwise.
• Q(x) = x3.

qcvxBQ(θ : θ′) = (θ′ − θ)
((θ′ + δ)3 + θ′3)

δ
,

when θ′ ≥ θ, or +∞ otherwise. When θ′ = 0, we now have

qcvxBQ(θ : θ′) = −δ2θ > 0 ∀θ < 0.

These examples show that the second condition of (53) is only useful for
non-monotonic functions.

3.3 Multivariate Quasiconvex Generators Q

The construction of the preceding section also applies when Q is multivariate.
We suppose for now that the quasiconvex function Q is differentiable so that

we have
qcvxBQ(θ : θ′) = (θ′ − θ)�∇Q(θ′). (58)

Let us fix δ > 0, and define the δ-averaged quasiconvex Bregman divergence
qcvxBδ

Q when Q is multivariate as:

qcvxBδ
Q(θ : θ′) :=

1
δ

∫ δ

0

qcvxBQ (θ + u(θ′ − θ) : θ′ + u(θ′ − θ)) du, (59)

for θ′ �= θ and Q(θ′) ≥ Q(θ).
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16 F. Nielsen and G. Hadjeres

Using Eq. 58, we obtain:

qcvxBδ
Q(θ : θ′) =

1
δ

(Q (θ′ + δ(θ′ − θ)) − Q(θ′)) . (60)

As this expression does not involves the derivatives of Q, we can use Eq. 60
to define the δ-averaged quasiconvex Bregman divergence in the case where the
quasiconvex function Q is not differentiable.

Let us report one example of quasiconvex Bregman divergence for a bivariate
generator: Let Q(θ) = max

{
θ3
1, θ

3
2

}
.

Q is quasiconvex as it is the maximum of two quasiconvex functions [1]. Let
θ′ = (0, 0). We have ∇Q(θ′) = (0, 0) so that qcvxBQ(θ′ : θ) = 0 for all θ such
that Q(θ) < Q(θ′) = 0.

Now, considering the δ-averaged quasiconvex Bregman divergence, we obtain

qcvxBQ(θ′ : θ) =
1
δ

max
{
(−δθ1)3, (−δθ2)3

}
= −δ2 min

{
θ3
1, θ

3
2

}
> 0, (61)

since max
{
θ3
1, θ

3
2

}
= Q(θ) < 0 implies that θ1 and θ2 are strictly negative.

3.4 Quasiconvex Bregman Divergences as Limit Cases of Power
Mean Bregman Divergences

For sake of simplicity, consider scalar divergences below. In [33], the (M,N)-
Bregman divergence is defined as the limit case:

BM,N
F (p : q) = lim

α→1−

1
α(1 − α)

JM,N
F,α (p : q), (62)

= lim
α→1−

1
α(1 − α)

(Nα(F (p), F (q))) − F (Mα(p, q))) . (63)

In particular, the univariate power mean Bregman divergences are obtained
by taking the power means, yielding the following formula:

Bδ1,δ2
F (p : q) =

F δ2(p) − F δ2(q)
δ2F δ2−1(q)

− pδ1 − qδ1

δ1qδ1−1
F ′(q). (64)

Let δ2 = r and δ1 = 1. Then we get the subfamily of r-power Bregman
divergences:

Br
F (θ : θ′) =

F r(θ) − F r(θ′)
rF r−1(θ′)

− (θ − θ′)F ′(θ′), (65)

= =
F r(θ)

rF r−1(θ′)
− F (θ′)

r
− (θ − θ′)F ′(θ′). (66)

In Eq. 66, when F (θ) > F (θ′) then we have limr→∞ Br
F (θ : θ′) = ∞ since(

F r(θ)
F r−1(θ′)

)
diverges. Otherwise qlnBF (θ : θ′) = limr→∞ Br

F (θ : θ′) = −(θ −
θ′)F ′(θ′) since limr→

F (θ′)
r = 0 (because |F (θ′)| < ∞).
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Quasiconvex Jensen Divergences and Quasiconvex Bregman Divergences 17

When r → ∞, the power mean operator Pr tends to the maximum operator:
limr→∞ Pr(a, b) = max{a, b}, and the (A,Pδ)-Bregman divergence tends to the
quasiconvex Bregman pseudo-divergence.

3.5 Some Illustrating Examples of Quasiconvex Bregman
Divergences

We concisely report two univariate quasiconvex scalar Bregman divergences:

• For Q(θ) = θ with θ ∈ R, we have

qcvxJα
Q(θ : θ′) = max{θ, θ′} − (1 − α)θ + αθ′.

We consider the two cases for calculating the limit qcvxBQ(θ : θ′) =
limα→1− 1

α(1−α)
qcvxJα

Q(θ : θ′):
– When θ′ ≥ θ:

lim
α→1−

1

α(1 − α)
qcvxJα

Q(θ : θ′) = lim
α→1−

1

α(1 − α)
(−(1 − α)θ + (1 − α)θ′) = θ′ − θ ≥ 0.

– When θ > θ′:

lim
α→1−

1
α(1 − α)

qcvxJα
Q(θ : θ′) = lim

α→1−

1
α(1 − α)

(θ − (1 − α)θ − αθ′),

= lim
α→1−

1
1 − α

(θ − θ′) = +∞.

Thus we have the following quasiconvex Bregman divergence: qcvxBQ(θ : θ′) =
θ′ − θ for θ′ ≥ θ and +∞ when θ′ < θ.

• When Q(θ) = log θ, we have Q′(θ) = 1
θ and qcvxBQ(θ : θ′) = 1 − θ

θ′ for
log θ′ ≥ log θ (i.e. θ′ ≥ θ) and +∞ when θ′ < θ.

• For Q(θ) =
√

θ and θ ∈ Θ = (0,∞), we have Q′(θ) = 1
2
√

θ
and qcvxBQ(θ :

θ′) = 1
2

(√
θ′ − θ√

θ′

)
for

√
θ′ ≥ √

θ (i.e., θ′ ≥ θ), and +∞ when θ′ < θ.

4 Statistical Divergences, Parametric Families
of Distributions and Equivalent Parameter Divergences

Consider a probability space (X ,F , μ) with X , F , and μ denoting the sample
space, the σ-algebra and the positive measure, respectively. The most celebrated
statistical divergence between two densities pθ � μ and pθ′ � μ absolutely
continuous with respect to a measure μ is the Kullback-Leibler (KL) divergence
(also called relative entropy [13]), defined by:

KL[p : q] =

{∫
x∈X p(x) log p(x)

q(x)dμ(x), supp(p) ⊂ supp(q),
+∞, supp(p) �⊂ supp(q).

, (67)
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18 F. Nielsen and G. Hadjeres

where supp(p) = {x ∈ R : p(x) > 0} denotes the support of a distribution
p(x), and log 0

0 = 0 by convention. Thus the KL divergence is said unbounded
in general.3

In general, a statistical divergence between densities belonging to the same
parametric family P = {pθ}θ of mutually absolutely continuous densities is
equivalent to a corresponding parameter divergence B:

B(θ : θ′) := D[pθ : pθ′ ]. (68)

For example, when P = {pθ(x) = exp(x�θ − F (θ))dμ(x)}θ is an exponen-
tial family [5,6,24] on a probability space (X ,F , μ), then the Kullback-Leibler
divergence between two densities of the exponential family (e.g., two Gaussians
distributions belonging to the Gaussian exponential family) amount to a reverse
Bregman divergence [5] for the Bregman generator set to the cumulant function
F (θ) = log

∫
exp(x�θ)dμ(x):

KL[pθ : pθ′ ] = B(θ : θ′) = BF
r(θ : θ′) = BF (θ′ : θ). (69)

Banerjee et al. [5] proved a one-to-one correspondence (bijection) between
regular natural exponential families and so-called regular Bregman divergences.
Note that since the Ali-Silvey-Csiszár’s f -divergence [2,3] (including the KL
divergence) is invariant to one-to-one smooth mapping m(x) of the sample space
x, the same Bregman divergence equivalent to the KL divergence can be obtained
for different exponential families where y = m(x). For example, the KL diver-
gence between two normal distributions or two “equivalent” log-normal distri-
butions is the same (using the mapping y = log x). This can be also noticed by
the matching of their cumulant function: Fnormal(θ) = Flognormal(θ).

Quasiconvex Bregman divergences have the interesting property to be finite
for one orientation and infinite for the other orientation. Thus to find an exam-
ple of parametric family of distributions which the KL divergence amount to
a quasiconvex Bregman divergence, we shall consider parametric distributions
with nested supports (or nested densities), so that one orientation of the KL
divergence will be finite while the other is will be equal to infinity.

For example, consider the family of univariate uniform densities (D = 1):

pθ(x) = 10<x<eθ e−θ, (70)

where 1A denotes the indicator function of A. We have supp(pθ′) ⊂ supp(pθ) for
0 < θ′ ≤ θ. Then we have

KL[pθ : pθ′ ] =
{

θ′ − θ = qlnBQ(θ : θ′) 0 < θ ≤ θ′,
+∞ θ′ > θ.

, (71)

for Q(ω) = ω.
Notice that the family P = {pθ} is not an exponential family since the family

has not a fixed support. A truncated exponential family with fixed truncation
3 The Jensen-Shannon divergence [28] is a particular symmetrization of the KL diver-

gence which is always bounded, and may accept densities with different supports.
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Quasiconvex Jensen Divergences and Quasiconvex Bregman Divergences 19

parameters yields an exponential family which may neither be regular nor steep
(e.g., the singly truncated normal distributions [15]).

Now, consider the parametric family {qθ}θ of nested densities:

qθ(x) = 10<x<eθα
xα−1

eθα
, (72)

for a prescribed α > 1. After a short calculation (or using a computer algebra AQ2

system as reported in Sect. 6), we find that

KL[qθ : qθ′ ] =
{

α(θ′ − θ) = qlnBQ(θ : θ′) θ′ ≥ θ > 0,
+∞ θ′ < θ.

, (73)

for Q(ω) = ω. Thus we have built several parametric families of nested densities
that up to a scaling factor yields the same quasiconvex Bregman divergence.

For parametric densities belonging to the same exponential family, it is known
that the Bhattacharrya distance amount to a Jensen divergence [29]. For an
exponential family pθ(x) = exp(θ�x − F (θ))dμ(x) with cumulant function F ,
the cross-entropy between two densities [30] is

h(pθ : pθ′) =
∫

−pθ(x) log pθ′(x)dμ(x) = F (θ′) − (θ′)�∇F (θ), (74)

and the entropy is

h(pθ) = h(pθ : pθ) = F (θ) − θ�∇F (θ). (75)

Since KL(pθ : pθ′) = BF (θ′ : θ) = F (θ′) − F (θ) − (θ′ − θ)�∇F (θ), when
F (θ′) ≤ F (θ), we have −(θ′ − θ)�∇F (θ) = qlnBF (θ′ : θ), and it follows that

qlnBF (θ′ : θ) = KL(pθ : pθ′) + F (θ) − F (θ′), F (θ′) ≤ F (θ). (76)

The Wasserstein distance between two nested univariate distributions has
been studied in [23] with applications to Bayesian statistics to study the influence
of the prior distribution in the posterior distribution in the finite sample size
setting.

5 Conclusion and Perspectives

In this chapter, we have introduced two novel families of distortions between vec-
tor parameters: The quasiconvex Jensen divergences and the quasiconvex Breg-
man divergences. We showed that the quasiconvex Jensen divergences measuring
the difference gaps of the quasiconvex inequalities can be interpreted as a �1-
regularized ordinary Jensen divergence. We noticed that any quasiconcave Jensen
divergence amounts to an equivalent quasiconvex Jensen divergence for the nega-
tive generator. We then derived the quasiconvex Bregman pseudo-divergences as
limit cases of scaled and skewed quasiconvex Jensen divergences for strictly qua-
siconvex generators. The quasiconvex Bregman pseudo-divergences is a pseudo-
divergence only at countably many inflection points of the generators. We thus
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20 F. Nielsen and G. Hadjeres

propose to define the δ-averaged quasiconvex Bregman divergences by integrat-
ing the pseudo-divergence over a small neighborhood. This yields a formula
(Eq. 57) that can be used as the definition of the quasiconvex Bregman diver-
gence even for non-differentiable strictly quasiconvex generators. We also showed
how to derive again the result of the quasiconvex Bregman pseudo-divergences
using comparative convexity [33] using the limit case of power means. A key
property of the quasiconvex Bregman divergences between distinct elements is
that they are necessarily finite on one orientation and infinite for the reverse
orientation. Finally, we showed how some of these quasiconvex Bregman diver-
gences can be obtained from the Kullback-Leibler divergence between probability
densities belonging to the same parametric family of distributions with nested
density support. We can retrieve the Bregman pseudo-divergences and quasicon-
vex Bregman pseudo-divergences from first-order convexity and quasiconvexity
conditions, as illustrated in Table 1. Additional conditions on the generators
ensure that the pseudo-divergences are proper divergences and satisfy the law of
the indiscernibles (i.e., strict convexity and differentiability for Bregman diver-
gences and strict quasiconvexity without inflection points for the quasiconvex
Bregman divergences).

We plan to consider applications of these novel divergences in clustering:
We note that the generic k-means++ probabilistic seeding analysis reported
in [32] does not apply because of the forward/reverse infinite property of these
quasiconvex Bregman divergences. We may consider discrete k-means, k-center
(with the minimum enclosing ball obtained from quasiconvex programming [1,
16,19,21] when k = 1), and quasiconvex Bregman hierarchical clustering [40].

Table 1. Bregman divergence and Bregman quasidivergence with their relationship to
first-order convexity and quasiconvexity.

First-order condition Pseudo-divergence/condition for divergence

Convexity F (θ) ≥ F (θ′) + (θ − θ′)�∇F (θ′) BF (θ : θ′) = F (θ) − F (θ′) + (θ − θ′)�∇F (θ′)
of F Divergence when F strictly convex and differentiable

Quasiconvexity Q(θ) ≤ Q(θ′) ⇒ (θ − θ′)�∇Q(θ′) ≤ 0

{
−(θ − θ′)�∇Q(θ′) if Q(θ) ≤ Q(θ′)
+∞ otherwise.

of Q Divergence when Q strictly quasiconvex with no inflection point

6 Calculations Using a Computer Algebra System

Using the computer algebra system (CAS) Maxima4, we report a snippet code
for the calculation of the Kullback-Leibler divergence for nested probability den-
sities.

4 Freely downloadable at http://maxima.sourceforge.net/.
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assume(alpha>1);
assume(theta>0);
p(x,theta):=alpha*(x**(alpha-1))/(exp(theta*alpha));
integrate(p(x,theta),x,0,exp(theta));
assume(thetap>theta);
/* Kullback-Leibler divergence */
integrate(p(x,theta)*log(p(x,theta)/p(x,thetap)),x,0,exp(theta));
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