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Abstract

We show how to guarantee non-negative Monte Carlo estimations of f-divergences by con-
sidering the corresponding extended f-divergences. We apply the method for estimating non-
negatively the Kullback-Leibler divergence and the Jensen-Shannon divergence.

1 Problem with naive Monte Carlo estimations of f-divergences

Let (X, F, 1) be a probability space [5] with X denoting the sample space, F' the o-algebra, and p
a reference positive measure. The f-divergence [3, 6] between two probability measures P and @
both absolutely continuous with respect to p for a convex generator f : (0,00) — R strictly convex
at 1 and satisfying f(1) =0 is
I(P:Q)=If(p:q) = 9@)
f(P:Q)=1Isp:q)= [ p(x)f du(z),
p(z)
where P = pdp and @ = ¢dp (i.e., p and g are Radon-Nikodym derivatives with respect to u). We
use the following conventions:

0f <8> =0, f(0)= lim f(u), Va>0,0f (%) = lim uf (Z) —auli_)nrolofgf).

u—0t u—0t+

When f(u) = —logu, we retrieve the Kullback-Leibler divergence (KLD):
px
Dty )= [ o) log 2 (o).

The KLD is usually difficult to calculate in closed-form, say, for example, between statistical
mixture models [7]. A common technique is to estimate the KLD using Monte Carlo sampling

using a proposal distribution r:
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KL, nzr (i),
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where 1, ...,T, ~jiq 7. When r is chosen as p, the KLD can be estimated as

= o 1¢ o PLE1)
KLn(p:q) = ;1 B (o) (1)

Monte Carlo estimators are consistent under mild conditions: lim,, s I/(in (p:q)=KL(p:q).

In practice, one problem when implementing Eq. 1, is that we may end up potentially with
I/{\Ln (p : q) < 0. This may have disastrous consequences as algorithms implemented by programs
consider non-negative divergences to execute a correct workflow. The potential negative value
problem of Eq. 1 comes from the fact that ), p(x;) # 1 and ), ¢(x;) # 1.

2 Non-negative Monte Carlo estimates from extended f-
divergences

A f-divergence is defined for a convex generator f(u) with f(u) = 1, strictly convex at 1 (hence
1'(1) exists). The non-negativeness of f-divergences follow from the Jensen’s inequality:

0 = [ v (50 ) aute) = 1 ([ 028 aut)) = 1) 0.

p(z) p()

Two f-divergenes coincide, i.e. If(p: q) = I4(p : q), iff there exists a real X such that g(u) =
f(u) + A(u —1). In particular, we can choose the following equivalent generator

gu) = f(u) = (u=1)f'(1) = f(u) = f(1) = (u—=1)f'(1) = Bp(u: 1), (2)
where Bf(a : b) is a scalar Bregman divergence [2]:
By(a:b) = f(a) — f(b) — (a = b)f'(b) = 0. (3)

Bregman divergences are always non-negative and equal to zero iff a = b.
Thus we given an alternative proof of the Gibb’s inequality of f-divergences as:

o) = i) = [ (1 (50) -0 (420 -1)) uto (4)

p(z) p(z)
= /p(x) Bf <]q92.;3 : 1) d,u($) > 0. (5)
>0

One way to circumvent this negative Monte Carlo estimation problem is to consider the extended
f-divergences:

Definition 1 (Extended f-divergence) The extended f-divergence for a convexr generator f,
strictly convex at 1 and satisfying f(1) = 0 is defined by

w0 = o) (£(45) - ro (45 1)) aute)



Setting a = Z(—i% and b = 1 in Eq. 3, and using the fact that f(1) =0, we get

Therefore we define the extended f-divergences as

500 = [ o8y (%051 aute) 2 o0 ®

That is, the formula for the extended f-divergences is

50 = [ o (7(52) - ) (59 -1) ) aute) 20, ()

Then we estimate the extended f-divergence using importance sampling of the integral with
respect to distribution r, using n variates x1,..., T, ~jq p as:

In(p:q) Zf( > f(l)(%ii—l)zo.

For example, for the KLD, we obtain the following Monte Carlo estimator:

n

ﬁn(p . q) = lz <10g p(xz) + Q<$Z) o 1) >0, (8)

n 2= "% g() " plr)

since the extended KLD is

p(z
Dxre(p:q) = / (p(m) log qu; +q(x) - p(x)) du(z).
Eq. 8 can be interpreted as a sum of scalar Itakura-Saito divergences since the Itakura-Saito di-
vergence is scale-invariant: KL,(p : ¢) = £ 37 | Dig(p(x;) : q(z;)) with the scalar Itakura-Saito
divergence

a
Dis(a : b) = Dig (b : 1) 2 log 2 1>0,

a Bregman divergence obtained for the generator f(u) = —logu.
Notice that the extended f-divergence is a f-divergence for the generator

fe(u) = f(u) = f/(1)(u—1).

We check that the generator f. satisfies both f(1) = 0 and f'(1) = 0, and we have I§(p : q) =
Ir.(p:q). Thus Dgye(p:q) = Ie, (p: q) with fgp(u) = —logu +u — 1.

Let us remark that we only need to have the scalar function strictly convex at 1 to ensure that
By (% : 1) > 0. Indeed, we may use the definition of Bregman divergences extended to strictly
convex functions but not necessarily smooth functions [4, 8]:

By(z:y) = g(ygré%;g(y){f(fﬂ) —fy) = (= -y},



where 0f(y) denotes the subderivative of f at y.

As a working example, consider the Jensen-Shannon divergence (bounded divergence which

does not require matching supports of distributions):

IS[p: q) := KL[ p;q:|+ KL[ p;q]

e A first estimation consists in estimating the KLDs separately:

Boumlpdl = 2711 <1°g (p(;)p ; ;)<xz>>+q®;)p<xf>(m>

=1

Z (10g (p 2q‘fiqu (¥:) ) " p(le)Q(_yzq)(yZ)>

- 3tay ml (108 (o v am) * 3o

1=

1 m <log( 2q(yi) >+ p(yi))
p(vi) + q(y:) 2q(yi) )’

=

O

with z1,..., 2, ~ia p(x) and y1, ..., Yn, ~iid ¢(T).

e A second estimation consists in expressing it as a f-divergence for the generator:

1+u 1+u U
fis(u) = —— 10g< 5 >+210g(u).

Indeed, we check that

q
Its(p:q) = /pf <p> dy,
1 2p
= = +q)lo
2/((1) q) gy
1 1
= 2/p10gpdu+/qlogpqdu,
m 2 mp
1 P 1 q
= 2/plogdu+2/qlogdu,
= KL[ p+q}+ KL{ p+q},

2 2
=: JS(p:q).

+ qlog q> dp,
p

Since we have fj5(1) = 0, we get the simplified non-negative f-divergence estimation formula:

)z

Itn(p:q) Zf(

with x1,..., 2, ~ .



e A third method consists in using the extended KLD:

ISelp: g = KL[ p;q% KL[ W}

where KL¢[p : q] = KL[p: ¢] + [(¢ — p)dp.
Then we estimate JS. using stochastic Monte Carlo integration using the proposal distribution
r=m = %. It follows that

1 & p(2;) 2p(x;) 2q(x;) 2q(x;) >
JSen — log + log >0,
pedi= g, ; < (i) +q(zi) 7 p(wi) +q(zi) — pled) +q(z) 7 pla) + q(2:)
(11)
where x1, ..., 2y, ~id M (sampled from the mixture distribution of p and ¢).
Note that if we define a divergence by Rs(p = [p(z ( : quD du(x) > 0 for f strictly

convex everywhere (but we do not require f/(1 ) = 0 here)7 and expand the formula, we end up with
the following inequality for the f-divergence:

Ii(p:q) < /(q(x) —p(a)) [’ (q(x)> du(z).

p(z)

In particular, we find that KL(p: ¢) < [(p —q) pd,u f r dp — 1.

3 Conclusion

The f-divergence I(p = [p(x (p(l, )du( ) is defined for a convex generator satisfying

f(1) = 0 since it follows from Jensen inequality that I;(p : q¢) > f (fp p(xg du(x )) = f(1) =
For densities, the generator f is equivalent to the family of generators fy(u) = f(u)+ A(u—1) where

AeR: Iy(p:q) =1 (p:q). We showed that we can express the f-divergence as a scaled integral
of a scalar Bregman divergence: I¢(p: q) = [ p(z ( g ) du(z) provided that f/(1) = 0. This
can always be done by choosing the equivalent generator [ such that fi(1) = f/(1) + A =0, ie.
A= —f'(1). It follows that in order to have the f-divergences satisfying the law of the indiscernibles,
we need to have strict convexity of f at 1. Expressing the f-divergence using a Bregman divergence
allows one to

P(ﬂﬁz)Bf (q(“) : 1) >0

1. calculate non-negative Monte Carlo estimates .ff(p L) = 130, en

=1 r(z;)
where z1,...,ZTs ~jqq T, & proposal distribution, and

2. extend the f-divergences to positive densities.

Furthermore, noticing that Iy¢(p : ¢) = Mf(p : ¢) for X > 0, we may enforce that f”(1) = 1, and
obtain a standard f-divergence [1] which enjoys the property that I (pg(z) : pprag(z)) = d@ ' I(6)de,
where I(6) denotes the Fisher information matrix of the parametric family {pg}g of densities.
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