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Abstract

We show how to guarantee non-negative Monte Carlo estimations of f -divergences by con-
sidering the corresponding extended f -divergences. We apply the method for estimating non-
negatively the Kullback-Leibler divergence and the Jensen-Shannon divergence.

1 Problem with naive Monte Carlo estimations of f-divergences

Let (X,F, µ) be a probability space [5] with X denoting the sample space, F the σ-algebra, and µ
a reference positive measure. The f -divergence [3, 6] between two probability measures P and Q
both absolutely continuous with respect to µ for a convex generator f : (0,∞)→ R strictly convex
at 1 and satisfying f(1) = 0 is

If (P : Q) = If (p : q) =

∫
p(x)f

(
q(x)

p(x)

)
dµ(x),

where P = pdµ and Q = qdµ (i.e., p and q are Radon-Nikodym derivatives with respect to µ). We
use the following conventions:

0f

(
0

0

)
= 0, f(0) = lim

u→0+
f(u), ∀a > 0, 0f

(a
0

)
= lim

u→0+
uf
(a
u

)
= a lim

u→∞

f(u)

u
.

When f(u) = − log u, we retrieve the Kullback-Leibler divergence (KLD):

DKL(p : q) =

∫
p(x) log

p(x)

q(x)
dµ(x).

The KLD is usually difficult to calculate in closed-form, say, for example, between statistical
mixture models [7]. A common technique is to estimate the KLD using Monte Carlo sampling
using a proposal distribution r:

K̂Ln(p : q) =
1

n

n∑
i=1

p(xi)

r(xi)
log

p(xi)

q(xi)
,
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where x1, . . . , xn ∼iid r. When r is chosen as p, the KLD can be estimated as

K̂Ln(p : q) =
1

n

n∑
i=1

log
p(xi)

q(xi)
. (1)

Monte Carlo estimators are consistent under mild conditions: limn→∞ K̂Ln(p : q) = KL(p : q).
In practice, one problem when implementing Eq. 1, is that we may end up potentially with

K̂Ln(p : q) < 0. This may have disastrous consequences as algorithms implemented by programs
consider non-negative divergences to execute a correct workflow. The potential negative value
problem of Eq. 1 comes from the fact that

∑
i p(xi) 6= 1 and

∑
i q(xi) 6= 1.

2 Non-negative Monte Carlo estimates from extended f-
divergences

A f -divergence is defined for a convex generator f(u) with f(u) = 1, strictly convex at 1 (hence
f ′(1) exists). The non-negativeness of f -divergences follow from the Jensen’s inequality:

If (p : q) =

∫
p(x)f

(
q(x)

p(x)

)
dµ(x) ≥ f

(∫
p(x)

q(x)

p(x)
dµ(x)

)
= f(1) = 0.

Two f -divergenes coincide, i.e. If (p : q) = Ig(p : q), iff there exists a real λ such that g(u) =
f(u) + λ(u− 1). In particular, we can choose the following equivalent generator

g(u) = f(u)− (u− 1)f ′(1) = f(u)− f(1)− (u− 1)f ′(1) =: Bf (u : 1), (2)

where Bf (a : b) is a scalar Bregman divergence [2]:

Bf (a : b) = f(a)− f(b)− (a− b)f ′(b) ≥ 0. (3)

Bregman divergences are always non-negative and equal to zero iff a = b.
Thus we given an alternative proof of the Gibb’s inequality of f -divergences as:

If (p : q) = Ig(p : q) =

∫
p(x)

(
f

(
q(x)

p(x)

)
− f ′(1)

(
q(x)

p(x)
− 1

))
dµ(x) (4)

=

∫
p(x)Bf

(
q(x)

p(x)
: 1

)
︸ ︷︷ ︸

≥0

dµ(x) ≥ 0. (5)

One way to circumvent this negative Monte Carlo estimation problem is to consider the extended
f -divergences:

Definition 1 (Extended f-divergence) The extended f -divergence for a convex generator f ,
strictly convex at 1 and satisfying f(1) = 0 is defined by

Ief (p : q) =

∫
p(x)

(
f

(
q(x)

p(x)

)
− f ′(1)

(
q(x)

p(x)
− 1

))
dµ(x).

2



Setting a = q(x)
p(x) and b = 1 in Eq. 3, and using the fact that f(1) = 0, we get

f

(
q(x)

p(x)

)
−
(
q(x)

p(x)
− 1

)
f ′(1) ≥ 0.

Therefore we define the extended f -divergences as

Ief (p : q) =

∫
p(x)Bf

(
q(x)

p(x)
: 1

)
dµ(x) ≥ 0. (6)

That is, the formula for the extended f -divergences is

Ief (p : q) =

∫
p(x)

(
f

(
q(x)

p(x)

)
− f ′(1)

(
q(x)

p(x)
− 1

))
dµ(x) ≥ 0. (7)

Then we estimate the extended f -divergence using importance sampling of the integral with
respect to distribution r, using n variates x1, . . . , xn ∼iid p as:

Îf,n(p : q) =
1

n

n∑
i=1

f

(
q(xi)

p(xi)

)
− f ′(1)

(
q(xi)

p(xi)
− 1

)
≥ 0.

For example, for the KLD, we obtain the following Monte Carlo estimator:

K̂Ln(p : q) =
1

n

n∑
i=1

(
log

p(xi)

q(xi)
+
q(xi)

p(xi)
− 1

)
≥ 0, (8)

since the extended KLD is

DKLe(p : q) =

∫ (
p(x) log

p(x)

q(x)
+ q(x)− p(x)

)
dµ(x).

Eq. 8 can be interpreted as a sum of scalar Itakura-Saito divergences since the Itakura-Saito di-
vergence is scale-invariant: K̂Ln(p : q) = 1

n

∑n
i=1DIS(p(xi) : q(xi)) with the scalar Itakura-Saito

divergence

DIS(a : b) = DIS

(a
b

: 1
)

=
a

b
− log

a

b
− 1 ≥ 0,

a Bregman divergence obtained for the generator f(u) = − log u.
Notice that the extended f -divergence is a f -divergence for the generator

fe(u) = f(u)− f ′(1)(u− 1).

We check that the generator fe satisfies both f(1) = 0 and f ′(1) = 0, and we have Ief (p : q) =
Ife(p : q). Thus DKLe(p : q) = IfeKL

(p : q) with feKL(u) = − log u+ u− 1.
Let us remark that we only need to have the scalar function strictly convex at 1 to ensure that

Bf
(
a
b : 1

)
≥ 0. Indeed, we may use the definition of Bregman divergences extended to strictly

convex functions but not necessarily smooth functions [4, 8]:

Bf (x : y) = max
g(y)∈∂f(y)

{f(x)− f(y)− (x− y)g(y)},

3



where ∂f(y) denotes the subderivative of f at y.
As a working example, consider the Jensen-Shannon divergence (bounded divergence which

does not require matching supports of distributions):

JS[p : q] :=
1

2
KL

[
p :

p+ q

2

]
+

1

2
KL

[
q :

p+ q

2

]
• A first estimation consists in estimating the KLDs separately:

ĴSn1,n2 [p : q] :=
1

2n1

n1∑
i=1

(
log

(
2p(xi)

p(xi) + q(xi)

)
+
q(xi)− p(xi)

2p(xi)

)
(9)

+
1

2n2

n2∑
i=1

(
log

(
2q(yi)

p(yi) + q(yi)

)
+
p(yi)− q(yi)

2q(yi)

)

= −1

2
+

1

2n1

n1∑
i=1

(
log

(
2p(xi)

p(xi) + q(xi)

)
+

q(xi)

2p(xi)

)

+
1

2n2

n2∑
i=1

(
log

(
2q(yi)

p(yi) + q(yi)

)
+

p(yi)

2q(yi)

)
, (10)

with x1, . . . , xn1 ∼iid p(x) and y1, . . . , yn2 ∼iid q(x).

• A second estimation consists in expressing it as a f -divergence for the generator:

fJS(u) := −1 + u

2
log

(
1 + u

2

)
+
u

2
log(u).

Indeed, we check that

IfJS(p : q) :=

∫
pf

(
q

p

)
dµ,

=
1

2

∫ (
(p+ q) log

2p

p+ q
+ q log

q

p

)
dµ,

=
1

2

∫
p log

p

m
dµ+

1

2

∫
q log

p

m

q

p
dµ,

=
1

2

∫
p log

p

m
dµ+

1

2

∫
q log

q

m
dµ,

=
1

2
KL

[
p :

p+ q

2

]
+

1

2
KL

[
q :

p+ q

2

]
,

=: JS(p : q).

Since we have f ′JS(1) = 0, we get the simplified non-negative f -divergence estimation formula:

Îf,n(p : q) =
1

n

n∑
i=1

f

(
q(xi)

p(xi)

)
≥ 0.

with x1, . . . , xn ∼ p.
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• A third method consists in using the extended KLD:

JSe[p : q] :=
1

2
KLe

[
p :

p+ q

2

]
+

1

2
KLe

[
q :

p+ q

2

]
,

where KLe[p : q] = KL[p : q] +
∫

(q − p)dµ.

Then we estimate JSe using stochastic Monte Carlo integration using the proposal distribution
r = m = p+q

2 . It follows that

JSe,n[p : q] :=
1

2n

n∑
i=1

(
2p(xi)

p(xi) + q(xi)
log

2p(xi)

p(xi) + q(xi)
+

2q(xi)

p(xi) + q(xi)
log

2q(xi)

p(xi) + q(xi)

)
≥ 0,

(11)
where x1, . . . , xn ∼iid

p+q
2 (sampled from the mixture distribution of p and q).

Note that if we define a divergence by Rf (p : q) =
∫
p(x)Bf

(
1 : q(x)p(x)

)
dµ(x) ≥ 0 for f strictly

convex everywhere (but we do not require f ′(1) = 0 here), and expand the formula, we end up with
the following inequality for the f -divergence:

If (p : q) ≤
∫

(q(x)− p(x))f ′
(
q(x)

p(x)

)
dµ(x).

In particular, we find that KL(p : q) ≤
∫

(p− q)pqdµ =
∫ p2

q dµ− 1.

3 Conclusion

The f -divergence If (p : q) =
∫
p(x)f

(
q(x)
p(x)

)
dµ(x) is defined for a convex generator satisfying

f(1) = 0 since it follows from Jensen inequality that If (p : q) ≥ f
(∫

p(x) q(x)p(x)dµ(x)
)

= f(1) = 0.

For densities, the generator f is equivalent to the family of generators fλ(u) = f(u)+λ(u−1) where
λ ∈ R: If (p : q) = Ifλ(p : q). We showed that we can express the f -divergence as a scaled integral

of a scalar Bregman divergence: If (p : q) =
∫
p(x)Bf

(
q(x)
p(x) : 1

)
dµ(x) provided that f ′(1) = 0. This

can always be done by choosing the equivalent generator fλ such that f ′λ(1) = f ′(1) + λ = 0, i.e.
λ = −f ′(1). It follows that in order to have the f -divergences satisfying the law of the indiscernibles,
we need to have strict convexity of f at 1. Expressing the f -divergence using a Bregman divergence
allows one to

1. calculate non-negative Monte Carlo estimates Îf (p : q) = 1
s

∑s
i=1

p(xi)
r(xi)

Bf

(
q(xi)
p(xi)

: 1
)
≥ 0

where x1, . . . , xs ∼idd r, a proposal distribution, and

2. extend the f -divergences to positive densities.

Furthermore, noticing that Iλf (p : q) = λIf (p : q) for λ > 0, we may enforce that f ′′(1) = 1, and
obtain a standard f -divergence [1] which enjoys the property that If (pθ(x) : pθ+dθ(x)) = dθ>I(θ)dθ,
where I(θ) denotes the Fisher information matrix of the parametric family {pθ}θ of densities.
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