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Abstract. Hyperbolic geometry has become popular in machine learn-
ing due to its capacity to embed discrete hierarchical graph structures
with low distortions into continuous spaces for further downstream pro-
cessing. It is thus becoming important to consider statistical models and
inference methods for data sets grounded in hyperbolic spaces. In this
work, we study the statistical f -divergences between two kinds of hy-
perbolic distributions: The Poincaré distributions and the related hyper-
boloid distributions. By exhibiting maximal invariants of group actions,
we show how these f -divergences can be expressed as functions of canon-
ical terms.
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1 Introduction

Hyperbolic geometry3 [2] is very well suited for embedding tree graphs with low
distortions [20] as hyperbolic Delaunay subgraphs of embedded tree nodes. So
a recent trend in machine learning and data science is to embed discrete hier-
archical graphs into continuous spaces with low distortions for further down-
stream processing. There exists many models of hyperbolic geometry [2] like the
Poincaré disk or upper-half plane conformal models, the Klein non-conformal
disk model, the Beltrami hemisphere model, the Minkowski or Lorentz hyper-
boloid model, etc. We can transform one model of hyperbolic geometry to an-
other model by a bijective mapping yielding a corresponding isometric embed-
ding [11]. As a byproduct of the low-distortion hyperbolic embeddings of hier-
archical graphs, many embedded data sets are nowadays available in hyperbolic
model spaces, and those data sets need to be further processed. Thus it is impor-
tant to build statistical models and inference methods for these hyperbolic data

3 Hyperbolic geometry has constant negative curvature and the volume of hyperbolic
balls increases exponentially with respect to their radii rather than polynomially as
in Euclidean spaces.
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sets using probability distributions with support hyperbolic model spaces, and
to consider statistical mixtures in those spaces for modeling arbitrary smooth
densities.

Let us quickly review some of the various families of probability distributions
defined in hyperbolic models as follows: One of the very first proposed family
of such “hyperbolic distributions” was proposed in 1981 [16] and are nowadays
commonly called the hyperboloid distributions in reference to their support: The
hyperboloid distributions are defined on the Minkowski upper sheet hyperboloid
by analogy to the von-Mises Fisher distributions [3] which are defined on the
sphere. Another work by Barbaresco [4] defined the so-called Souriau-Gibbs dis-
tributions (2019) in the Poincaré disk (Eq. 57 of [4], a natural exponential family)
with its Fisher information metric coinciding with the Poincaré hyperbolic Rie-
mannian metric (the Poincaré unit disk is a homogeneous space where the Lie
group SU(1, 1) acts transitively).

In this paper, we focus on Ali-Silvey-Csiszár’s f -divergences between hyper-
bolic distributions [14, 1]. In section 2, we prove using Eaton’s method of group
action maximal invariants [15, 19] that all f -divergences (including the Kullback-
Leibler divergence) between Poincaré distributions [21] can be expressed canon-
ically as functions of three terms (Proposition 1 and Theorem 1). Then, we
deal with the hyperboloid distributions in dimension 2 in §3. We also consider
q-deformed family of these distributions [23]. We exhibit a correspondence in
§4 between the upper-half plane and the Minkowski hyperboloid 2D sheet. The
f -divergences between the hyperboloid distributions are in spirit very geometric
because it exhibits a beautiful and clear maximal invariant which has connections
with the side-angle-side congruence criteria for triangles in hyperbolic geometry.
This paper summarizes the preprint [18] with some proofs omitted: We refer the
reader to the preprint for more details and other topics than f -divergences.

2 The Poincaré distributions

Tojo and Yoshino [22, 21, 23] described a versatile method to build exponential
families of distributions on homogeneous spaces which are invariant under the
action of a Lie groupG generalizing the construction in [13]. They exemplify their
so-called “G/H-method" on the upper-half plane H := {(x, y) ∈ R2 : y > 0} by
constructing an exponential family with probability density functions invariant
under the action of Lie group G = SL(2,R), the set of invertible matrices with
unit determinant. We call these distributions the Poincaré distributions, since
their sample space X = G/H ≃ H, and we study this set of distributions as
an exponential family [8]: The probability density function (pdf) of a Poincaré
distribution [21] expressed using a 3D vector parameter θ = (a, b, c) ∈ R3 is
given by

pθ(x, y) :=

√
ac− b2 exp(2

√
ac− b2)

π
exp

(
−a(x

2 + y2) + 2bx+ c

y

)
1

y2
, (1)
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where θ belongs to the parameter space

Θ := {(a, b, c) ∈ R3 : a > 0, c > 0, ac− b2 > 0}.

The set Θ forms an open 3D convex cone. Thus the Poincaré distribution family
has a 3D parameter cone space and the sample space is the hyperbolic upper
plane. We can also use a matrix form to express the pdf. Indeed, we can naturally
identify Θ with the set of real symmetric positive-definite matrices Sym+(2,R)

by the mapping (a, b, c) 7→
[
a b
b c

]
. Hereafter, we denote the determinant of θ by

|θ| := ac− b2 > 0 and the trace of θ by tr(θ) = a+ c for θ = (a, b, c) ≃
[
a b
b c

]
.

The f -divergence [14, 1] induced by a convex generator f : (0,∞) → R
between two pdfs p(x, y) and q(x, y) defined on the support H is defined by

Df [p : q] :=

∫
H
p(x, y) f

(
q(x, y)

p(x, y)

)
dxdy. (2)

Since Df [p : q] ≥ f(1), we consider convex generators f(u) such that f(1) = 0.
Moreover, in order to satisfy the law of the indiscernibles (i.e., Df [p : q] = 0
iff p(x, y) = q(x, y)), we require f to be strictly convex at 1. The class of f -
divergences includes the total variation distance (f(u) = |u− 1|), the Kullback-
Leibler divergence (f(u) = − log(u), and its two common symmetrizations,
namely, the Jeffreys divergence and the Jensen-Shannon divergence), the squared
Hellinger divergence, the Pearson and Neyman sided χ2-divergences, the α-
divergences, etc.

We state the notion of maximal invariant by following [15]: Let G be a group
acting on a set X. We denote the group action by (g, x) 7→ gx.

Definition 1 (Maximal invariant). We say that a map φ from X to a set Y
is maximal invariant if it is invariant, specifically, φ(gx) = φ(x) for every g ∈ G
and x ∈ X, and furthermore, whenever φ(x1) = φ(x2) there exists g ∈ G such
that x2 = gx1.

It can be shown that every invariant map is a function of a maximal invariant[15].
Specifically, if a map ψ from X to a set Z is invariant, then, there exists a unique
map Φ from φ(X) to Z such that Φ ◦ φ = ψ.

These invariant/maximal invariant concepts can be understood using group
orbits: For each x ∈ X, we may consider its orbit Ox := {gx ∈ X : g ∈ G}.
A map is invariant when it is constant on orbits and maximal invariant when
orbits have distinct map values.

We denote by A⊤e the transpose of a square matrix A and A−⊤ the transpose
of the inverse matrix A−1 of a regular matrix A. It holds that A−⊤ = (A⊤)−1.

Let SL(2,R) be the group of 2× 2 real matrices with unit determinant.

Proposition 1. Define a group action of SL(2,R) to Sym+(2,R)2 by

(g, (θ, θ′)) 7→ (g−⊤θg−1, g−⊤θ′g−1). (3)
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Define a map S : Sym+(2,R)2 → (R>0)
2 × R by

S(θ, θ′) :=
(
|θ|, |θ′|, tr(θ′θ−1)

)
. (4)

Then, the map S is maximal invariant of the group action.

Proof. Observe that S is invariant with respect to the group action: S (θ, θ′) =

S (g.θ, g.θ′). Assume that S
(
θ(1), θ(2)

)
= S

(
θ̃(1), θ̃(2)

)
. We see that there exists

gθ(1) ∈ SL(2,R) such that gθ(1) .θ(1) = g−⊤
θ(1)θ

(1)g−1
θ(1) =

√
|θ(1)|I2, where I2 denotes

the 2× 2 identity matrix. Then, θ(1) =
√
|θ(1)|g⊤

θ(1)gθ(1) . Let θ(3) := gθ(1) .θ(2) =

g−⊤
θ(1)θ

(2)g−1
θ(1) . Then tr

(
θ(3)

)
= tr

(
θ(2)g−1

θ(1)g
−⊤
θ(1)

)
=

√
|θ(1)| tr

(
θ(2)(θ(1))−1

)
. We

define g
θ̃(1)

and θ̃(3) in the same manner. Then, tr
(
θ(3)

)
= tr

(
θ̃(3)

)
and |θ(3)| =∣∣∣θ̃(3)∣∣∣. Hence the set of eigenvalues of θ(3) and θ̃(3) are identical with each other.

By this and θ(3), θ̃(3) ∈ Sym(2,R), there exists h ∈ SO(2) such that h.θ(3) = θ̃(3).
Hence (hgθ(1)).θ(2) = g

θ̃(1)
θ̃(2). We also see that

(hgθ(1)).θ(1) = gθ(1) .θ(1) =
√∣∣θ(1)∣∣ I2 =

√∣∣∣θ̃(1)∣∣∣ I2 = g
θ̃(1)

.θ̃(1).

Thus we have
(
θ̃(1), θ̃(2)

)
= (g−1

θ(1)hgθ(1)).(θ(1), θ(2)).

Remark 1 (This is pointed by an anonymous referee.). We can consider an exten-
sion of Proposition 1 to a case of higher degree of matrices. Let n ≥ 2 and assume
that θ, θ′ ∈ Sym(n,R). Let Pθ,θ′(t) := |(1− t)θ+ tθ′| for t ∈ R. where |A| denotes
the determinant of a square matrix A. This is a polynomial in t with degree n.
Assume that Pθ1,θ′

1
= Pθ2,θ′

2
for θ1, θ′1, θ2, θ′2 ∈ Sym(n,R). We can factor θi as

θi = L⊤
i Li for some Li, i = 1, 2. Let In be the identity matrix of degree n. Then,

Pθi,θ′
i
(t) = |θi||In+t(L−⊤

i θ′iL
−1
i −In)|, i = 1, 2. Since L−⊤

i θ′iL
−1
i ∈ Sym(n,R), the

set of eigenvalues of L−⊤
1 θ′iL

−1
1 and L−⊤

2 θ′iL
−1
2 is identical with each other. Hence

there exists an orthogonal matrix Q such that L−⊤
2 θ′iL

−1
2 = Q⊤L−⊤

1 θ′iL
−1
1 Q. Let

G := L−1
1 QL2. Then, θ2 = G⊤θ1G and θ′2 = G⊤θ′1G. We finally remark that

Pθ1,θ′
1
= Pθ2,θ′

2
holds if and only if Pθ1,θ′

1
(t) = Pθ2,θ′

2
(t) for n+ 1 different values

of t.
If n = 2, then,

Pθ,θ′(t) = (1− t)2|θ|2 + t2|θ′|2 + t(1− t) |θ| tr(θ′θ−1). (5)

Hence the arguments above give an alternative proof of Proposition 1.

Proposition 2 (Invariance of f-divergences under group action).

Df [pθ : pθ′ ] = Df

[
pg−⊤θg−1 : pg−⊤θ′g−1

]
.

For g ∈ SL(2,R), we denote the pushforward measure of a measure ν on H
by the map z 7→ g.z on H by ν ◦ g−1.

The latter part of the following proof utilizes the method used in the proof
of [21, Proposition 1].
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Proof. We first see that for g ∈ SL(2,R),

Df [pθ : pθ′ ] = Df

[
pθ ◦ g−1 : pθ′ ◦ g−1

]
. (6)

Let µ(dxdy) := dxdy/y2. Then it is well-known that µ is invariant with
respect to the action of SL(2,R) on H, that is, µ = µ ◦ g−1 for g ∈ SL(2,R).

Define a map φ : Θ ×H → R>0 by

φ(θ, x+ yi) :=
a(x2 + y2) + 2bx+ c

y
, θ =

[
a b
b c

]
.

Then, φ(θ, z) = φ(g.θ, g.z) for g ∈ SL(2,R).
Since

pθ(x, y)dxdy =

√
|θ| exp(2

√
|θ|)

π
exp(−φ(θ, x+ yi))µ(dxdy),

we have pθ ◦ g−1 = pg.θ. Hence,

Df

[
pθ ◦ g−1 : pθ′ ◦ g−1

]
= Df [pg.θ : pg.θ′ ] . (7)

The assertion follows from (6) and (7).

By Propositions 1 and 2, we get

Theorem 1. Every f -divergence between two Poincaré distributions pθ and pθ′

is a function of
(
|θ|, |θ′|, tr

(
θ′θ−1

))
and invariant with respect to the SL(2,R)-

action.

We obtained exact formulae for the Kullback-Leibler divergence, the squared
Hellinger divergence, and the Neyman chi-squared divergence.

Proposition 3. We have the following results for two Poincaré distributions pθ
and pθ′ .
(i) (Kullback-Leibler divergence) Let f(u) = − log u. Then,

Df [pθ : pθ′ ] =
1

2
log

|θ|
|θ′|

+ 2
(√

|θ| −
√

|θ′|
)
+

(
1

2
+

√
|θ|

)
(tr(θ′θ−1)− 2). (8)

(ii) (squared Hellinger divergence) Let f(u) = (
√
u− 1)2/2. Then,

Df [pθ : pθ′ ] = 1−
2|θ|1/4|θ′|1/4 exp

(
|θ|1/2 + |θ′|1/2

)
|θ + θ′|1/2 exp

(
|θ + θ′|1/2

) . (9)

(iii) (Neyman chi-squared divergence) Let f(u) := (u − 1)2. Assume that
2θ′ − θ ∈ Θ. Then,

Df [pθ : pθ′ ] =
|θ′| exp(4|θ′|1/2)

|θ|1/2|2θ′ − θ|1/2 exp
(
2(|θ|1/2 + |2θ′ − θ|1/2)

) − 1. (10)
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We remark that |θ + θ′| and |2θ′ − θ| can be expressed by using |θ|, |θ′|, and
tr(θ′θ−1). Indeed, we have

|θ + θ′| = |θ|+ |θ′|+ |θ| tr(θ′θ−1),

|2θ′ − θ| = 4|θ′|+ |θ| − 2|θ| tr(θ′θ−1).

Thus the KLD between two Poincaré distributions is asymmetric in general.
The situation is completely different from the Cauchy distribution whose f -
divergences are always symmetric [19, 24].

Recently, Tojo and Yoshino [23] introduced a notion of deformed exponen-
tial family associated with their G/H method in representation theory. As an
example of it, they considered a family of deformed Poincaré distributions with
index q > 1. For x ∈ Iq := {x ∈ R : (1− q)x+ 1 > 0}, let

expq(x) := ((1− q)x+ 1)1/(1−q), x ∈ Iq.

For q ∈ [1, 2), let a q-deformed Poincaré distribution be the distribution

pθ(x, y) := cq(
√

|θ|) expq
(
−a(x

2 + y2) + 2bx+ c

y

)
1

y2
, (11)

where θ ∈ Θ and cq(x) :=
(2− q)x

π(expq(−2x))2−q
. In this case, Proposition 2 holds

for q-deformed Poincaré distributions, so we also obtain that

Theorem 2. Let q ∈ [1, 2). Every f -divergence between two q-deformed Poincaré
distributions pθ and pθ′ is a function of

(
|θ|, |θ′|, tr

(
θ′θ−1

))
.

We proved this by Theorem 4 below and the correspondence principle in §4.

3 The two-dimensional hyperboloid distributions

We first give the definition of the Lobachevskii space (in reference to Minkowski
hyperboloid model of hyperbolic geometry also called the Lorentz model) and the
parameter space of the hyperboloid distribution. We focus on the bidimensional
case d = 2. Let

L2 :=

{
(x0, x1, x2) ∈ R3 : x0 =

√
1 + x21 + x22

}
,

and
ΘL2 :=

{
(θ0, θ1, θ2) ∈ R3 : θ0 >

√
θ21 + θ22

}
.

Let the Minkowski inner product [12] be

[(x0, x1, x2), (y0, y1, y2)] := x0y0 − x1y1 − x2y2.

We have L2 = {x ∈ R3 : [x, x] = 1}.
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Now we define the hyperboloid distribution by following [5, 7, 9]. Hereafter,
for ease of notation, we let |θ| := [θ, θ]1/2, θ ∈ ΘL2 . For θ ∈ ΘL2 , we define a
probability measure Pθ on Ld ≃ Rd by

Pθ(dx1dx2) := c2(|θ|) exp(−[θ, x̃])µ(dx1dx2), (12)

where we let c2(t) := t exp(t)
2(2π)1/2

, t > 0, x̃ :=
(√

1 + x21 + x22, x1, x2

)
, and

µ(dx1dx2) :=
1√

1+x2
1+x2

2

dx1dx2.

Remark 2. The 1D hyperboloid distribution was first introduced in statistics
in 1977 [6] to model the log-size distributions of particles from aeolian sand
deposits, but the 3D hyperboloid distribution was later found already studied in
statistical physics in 1911 [17]. The 2D hyperboloid distribution was investigated
in 1981 [10].

Now we consider group actions on the space of parameters ΘL2 . Let the
indefinite special orthogonal group be

SO(1, 2) :=
{
A ∈ SL(3,R) : [Ax,Ay] = [x, y] ∀x, y ∈ R3

}
,

and SO0(1, 2) :=
{
A ∈ SO(1, 2) : A(L2) = L2

}
.

An action of SO0(1, 2) to (ΘL2)
2 is defined by

SO0(1, 2)× (ΘL2)
2 ∋ (A, (θ, θ′)) 7→ (Aθ,Aθ′) ∈ (ΘL2)

2
.

Proposition 4. (θ, θ′) 7→ ([θ, θ], [θ′, θ′], [θ, θ′]) is maximal invariant for the ac-
tion of SO0(1, 2) to (ΘL2)

2.

In the following proof, all vectors are column vectors.

Proof. It is clear that the map is invariant with respect to the group action.
Assume that(

[θ(1), θ(1)], [θ(2), θ(2)], [θ(1), θ(2)]
)
=

([
θ̃(1), θ̃(1)

]
,
[
θ̃(2), θ̃(2)

]
,
[
θ̃(1), θ̃(2)

])
.

Let ψi :=
θ(i)

|θ(i)| , ψ̃i :=
θ̃(i)∣∣∣θ̃(i)

∣∣∣ , i = 1, 2. Then, [ψ1, ψ2] =
[
ψ̃1, ψ̃2

]
.

We first consider the case that ψ1 = ψ̃1 = (1, 0, 0)⊤. Let ψi = (xi0, xi1, xi2)
⊤, ψ̃i =

(x̃i0, x̃i1, x̃i2)
⊤
, i = 1, 2. Then, x20 = x̃20 > 0, x221+x222 = x̃21

2
+ x̃22

2 and hence
there exists a special orthogonal matrix P such that P (x21, x22)⊤ = (x̃21, x̃22)

⊤.

Let A :=

(
1 0
0 P

)
. Then, A ∈ SO0(1, 2), Aψ1 = (1, 0, 0)⊤ = ψ̃1 and Aψ2 = ψ̃2.

We second consider the general case. Since the action of SO0(1, 2) to L2

defined by (A,ψ) 7→ Aψ is transitive, there exist A,B ∈ SO0(1, 2) such that
Aψ1 = Bψ̃1 = (1, 0, 0)⊤. Thus this case is attributed to the first case.
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We regard µ as a probability measure on L2. We recall that [Aθ,Ax̃] = [θ, x̃]
for A ∈ SO0(1, 2). We remark that µ is an SO(1, 2)-invariant Borel measure [16]
on L2. Now we have that

Theorem 3. Every f -divergence between pθ and pθ′ is invariant with respect to
the action of SO0(1, 2), and is a function of the triplet ([θ, θ], [θ′, θ′], [θ, θ′]), i.e.,
the pairwise Minkowski inner products of θ and θ′.

There is a clear geometric interpretation of this fact: The side-angle-side the-
orem for triangles in Euclidean geometry states that if two sides and the included
angle of one triangle are equal to two sides and the included angle of another
triangle, then the triangles are congruent. This is also true for the hyperbolic
geometry and it corresponds to Proposition 4 above. Every f -divergence is de-
termined by the triangle formed by a pair of the parameters (θ, θ′) when f is
fixed.

Proposition 5. We have the following results for two hyperboloid distributions
pθ and pθ′ .
(i) (Kullback-Leibler divergence) Let f(u) = − log u. Then,

Df [pθ : pθ′ ] = log

(
|θ|
|θ′|

)
− |θ′|+ [θ, θ′]

[θ, θ]
+

[θ, θ′]

|θ|
− 1. (13)

(ii) (squared Hellinger divergence) Let f(u) = (
√
u− 1)2/2. Then,

Df [pθ : pθ′ ] = 1− 2|θ|1/2|θ′|1/2 exp (|θ|/2 + |θ′|/2)
|θ + θ′| exp (|θ + θ′|/2)

. (14)

(iii) (Neyman chi-squared divergence) Let f(u) := (u − 1)2. Assume that
2θ′ − θ ∈ ΘL2 . Then,

Df [pθ : pθ′ ] =
|θ′|2 exp(2|θ′|)

|θ||2θ′ − θ| exp(|θ|+ |2θ′ − θ|)
− 1. (15)

Now we consider deformations of the hyperboloid distribution. For q ∈ [1, 2),
we let a q-deformed hyperboloid distribution be the distribution

pθ(x1, x2) := cq(|θ|) expq (− [θ, x̃])
1√

1 + x21 + x22
, (16)

where cq(z) :=
(2− q)z

2π(expq(−z))2−q
.

In the same manner as in the derivation of Theorem 3, we obtain that

Theorem 4 (Canonical terms of the f-divergences between deformed
hyperboloid distributions). Let q ∈ [1, 2). Then, every f -divergence between
q-deformed hyperboloid distributions pθ and pθ′ is invariant with respect to the
action of SO0(1, 2), and is a function of the triplet ([θ, θ], [θ′, θ′], [θ, θ′]).
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4 Correspondence principle

It is well-known that there exists a correspondence between the 2D Lobachevskii
space L = L2 (hyperboloid model) and the Poincaré upper-half plane H.

Proposition 6 (Correspondence between the parameter spaces). For
θ = (a, b, c) ∈ ΘH :=

{
(a, b, c) : a > 0, c > 0, ac > b2

}
, let θL := (a+c, a−c, 2b) ∈

ΘL. We denote the f -divergence on L and H by DL
f [· : ·] and DH

f [· : ·] respectively.
Then,
(i) For θ, θ′ ∈ ΘH,

|θL|2 = [θL, θL] = 4|θ|, |θ′L|2 = [θ′L, θ
′
L] = 4|θ′|, [θL, θ

′
L] = 2|θ|tr(θ′θ−1). (17)

(ii) For every f and θ, θ′ ∈ H,

DL
f

[
pθL : pθ′

L

]
= DH

f [pθ : pθ′ ] . (18)

For (i), at its first glance, there seems to be an inconsistency in notation.
However, |θ| is the Minkowski norm for θ ∈ θL, and, |θ| is the determinant for
θ ∈ Θv, so the notation is consistent in each setting. By this assertion, it suffices
to compute the f -divergences between the hyperboloid distributions on L.

Let µH(dxdy) :=
dxdy

y2
and µL(dxdy) :=

dxdy√
1 + x2 + y2

. By the change of

variable

H ∋ (x, y) 7→ (X,Y ) =

(
1− x2 − y2

2y
,
x

y

)
∈ R2,

by recalling the correspondence between the parameters in Eq. (17), it holds
that y2pθ(x, y) =

√
1 +X2 + Y 2pθL(X,Y ), and µH(dxdy) = µL(dXdY ).

Acknowledgements The authors are grateful to two anonymous referees for
valuable comments. It is worth of special mention that Remark 1 is suggested
by one referee and the proof of Proposition 2 is suggested by the other referee.
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