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Notions of means. The notion of means [10] is central to mathematics and statistics, and plays a key role
in machine learning and data analytics. The three classical Pythagorean means of two positive reals x and
y are the arithmetic (A), geometric (G), and harmonic (H) means, given respectively by

A(x, y) =
x+ y

2
, G(x, y) =

√
xy, H(x, y) =

2xy

x+ y
.

These Pythagorean means were originally geometrically studied to define proportions, and the harmonic
mean led to a beautiful connection between mathematics and music. The Pythagorean means enjoy the
following inequalities:

min(x, y) ≤ H(x, y) ≤ G(x, y) ≤ A(x, y) ≤ max(x, y),

with equality if and only if x = y. These Pythagorean means belong to a broader parametric family of

means, the power means Mp(x, y) =
(

xp+yp

2

) 1
p

defined for p ∈ R\{0}. We have A(x, y) = M1(x, y),

H(x, y) = M−1(x, y) and in the limits: G(x, y) = limp→0 Mp(x, y), max(x, y) = limp→+∞ Mp(x, y) and
min(x, y) = limp→−∞ Mp(x, y). Power means are also called binomial, Minkowski or Hölder means in the
literature.

There are many ways to define and axiomatize means with a rich literature [8]. An important class of
means are the quasi-arithmetic means induced by strictly increasing and differentiable real-valued functional
generators f(u):

Mf (x, y) = f−1

(
f(x) + f(y)

2

)
. (1)

Quasi-arithmetic means satisfy the in-betweenness property of means: min(x, y) ≤ Mf (x, y) ≤ max(x, y),

and are called so because f(Mf (x, y)) = f(x)+f(y)
2 = A(f(x), f(y)) is the arithmetic mean on the f -

representation of numbers.
The power means are quasi-arithmetic means, Mp = Mfp , obtained for the following continuous family

of generators:

fp(u) =

{
up−1

p , p ∈ R\{0},
log(u), p = 0.

, f−1
p (u) =

{
(1 + up)

1
p , p ∈ R\{0},

exp(u), p = 0.
.

Power means are the only homogeneous quasi-arithmetic means, where a mean M(x, y) is said homogeneous
when M(λx, λy) = λM(x, y) for any λ > 0.

Quasi-arithmetic means can also be defined for n-variable means (i.e., Mf (x1, . . . , xn) =
f−1( 1n

∑n
i=1 f(xi))), and more generally for calculating expected values of random variables [10]: We denote

by Ef [X] = f−1(E[f(X)]) the quasi-arithmetic expected value of a random variable X induced by a strictly
monotone and differentiable function f(u). For example, the geometric and harmonic expected values of X
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are defined by EG[X] = Elog x[X] = exp(E[logX]) and EH [X] = Ex−1 [X] = 1
E[1/X] , respectively. The ordi-

nary expectation is recovered for f(u) = u: EA[X] = Ex[X] = E[X]. The quasi-arithmetic expected values
satisfy a strong law of large numbers and a central limit theorem ([10], Theorem 1): Let X1, . . . , Xn be inde-
pendent and identically distributed (i.i.d.) with finite variance V[f(X)] < ∞ and derivative f ′(Ef [X]) ̸= 0
at x = Ef [X]. Then we have

Mf (X1, . . . , Xn)
a.s.−→ Ef [X]

√
n (Mf (X1, . . . , Xn)− Ef [X])

d−→ N

(
0,

V[f(X)]

(f ′(Ef [X]))
2

)

as n → ∞, where N(µ, σ2) denotes a normal distribution of expectation µ and variance σ2.

Inductive means. An inductive mean is a mean defined as a limit of a convergence sequence of other
means [16]. The notion of inductive means defined as limits of sequences was pioneered independently by
Lagrange and Gauss [7] who studied the following double sequence of iterations:

at+1 = A(at, gt) =
at + gt

2
,

gt+1 = G(at, gt) =
√
atgt,

initialized with a0 = x > 0 and g0 = y > 0. We have

g0 ≤ . . . ≤ gt ≤ AGM(x, y) ≤ at ≤ . . . ≤ a0,

where the homogeneous arithmetic-geometric mean (AGM) is obtained in the limit:

AGM(x, y) = lim
t→∞

at = lim
t→∞

gt.

There is no-closed form formula for the AGM in terms of elementary functions as this induced mean is
related to the complete elliptic integral of the first kind K(·) [7]:

AGM(x, y) =
π

4

x+ y

K
(

x−y
x+y

) ,
where K(u) =

∫ π
2

0
dθ√

1−u2 sin2(θ)
is the elliptic integral. The fast quadratic convergence [11] of the AGM

iterations makes it computationally attractive, and the AGM iterations have been used to numerically
calculate digits of π or approximate the perimeters of ellipses among others [7].

Some inductive means admit closed-form formulas: For example, the arithmetic-harmonic mean
AHM(x, y) obtained as the limit of the double sequence

at+1 = A(at, ht) =
at + ht

2
,

ht+1 = H(at, ht) =
2atht

at + ht
,

initialized with a0 = x > 0 and h0 = y > 0 converges to the geometric mean:

AHM(x, y) = lim
t→∞

at = lim
t→∞

ht =
√
xy = G(x, y).

In general, inductive means defined as the limits of double sequences with respect to two smooth symmetric
means M1 and M2:

at+1 = M1(at, bt),

bt+1 = M2(at, bt),
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are proven to convergence quadratically [11] to DSM1,M2(a0, b0) = limt→∞ at = limt→∞ bt (order-2 conver-
gence).

Inductive means and matrix means. We have obtained so far three ways to get the geometric scalar
mean G(x, y) =

√
xy between positive reals x and y:

1. As an inductive mean with the arithmetic-harmonic double sequence: G(x, y) = AHM(x, y),

2. As a quasi-arithmetic mean obtained for the generator f(u) = log u: G(x, y) = Mlog(x, y), and

3. As the limit of power means: G(x, y) = limp→0 Mp(x, y).

Let us now consider the geometric mean G(X,Y ) of two symmetric positive-definite (SPD) matrices X
and Y of size d × d. SPD matrices generalize positive reals. We shall investigate the three generalizations
of the above approaches of the scalar geometric mean, and show that they yield different notions of matrix
geometric means when d > 1.

First, the AHM iterations can be extended to SPD matrices instead of reals:

At+1 =
At +Ht

2
= A(At, Ht),

Ht+1 = 2 (A−1
t +H−1

t )−1 = H(At, Ht),

where the matrix arithmetic mean is A(X,Y ) = X+Y
2 and the matrix harmonic mean is H(X,Y ) = 2(X−1+

Y −1)−1. The AHM iterations initialized with A0 = X and H0 = Y yield in the limit t → ∞, the matrix
arithmetic-harmonic mean [14, 3] (AHM):

AHM(X,Y ) = lim
t→+∞

At = lim
t→+∞

Ht.

Remarkably, the matrix AHM enjoys quadratic convergence to the following SPD matrix:

AHM(X,Y ) = X
1
2 (X− 1

2 Y X− 1
2 )

1
2 X

1
2 = G(X,Y ).

When X = x and Y = y are positive reals, we recover G(X,Y ) =
√
xy. When X = I, the identity matrix,

we get G(I, Y ) = Y
1
2 =

√
Y , the positive square root of SPD matrix Y . Thus the matrix AHM iterations

provide a fast method in practice to numerically approximate matrix square roots by bypassing the matrix
eigendecomposition. When matrices X and Y commute (i.e., XY = Y X), we have G(X,Y ) =

√
XY . The

geometric mean G(A,B) is proven to be the unique solution to the matrix Ricatti equation XA−1X =
B, is invariant under inversion (i.e., G(A,B) = G(A−1, B−1)−1), and satisfies the determinant property
det(G(A,B)) =

√
det(A) det(B).

Let P denote the set of symmetric positive-definite d × d matrices. The matrix geometric mean can be
interpreted using a Riemannian geometry [5] of the cone P: Equip P with the trace metric tensor, i.e., a
collection of smoothly varying inner products gP for P ∈ P defined by

gP (S1, S2) = tr
(
P−1S1P

−1S2

)
,

where S1 and S2 are matrices belonging to the vector space of symmetric d× d matrices (i.e., S1 and S2 are
geometrically vectors of the tangent plane TP of P ∈ P). The geodesic length distance on the Riemannian
manifold (P, g) is

ρ(P1, P2) =
∥∥∥log (P− 1

2
1 P2 P

− 1
2

1

)∥∥∥
F
=

√√√√ d∑
i=1

log2 λi

(
P

− 1
2

1 P2 P
− 1

2
1

)
,

where λi(M) denotes the i-th largest real eigenvalue of a symmetric matrix M , ∥ · ∥F denotes the Frobenius
norm, and logP is the unique matrix logarithm of a SPD matrix P . Interestingly, the matrix geometric
mean G(X,Y ) = AHM(X,Y ) can also be interpreted as the Riemannian center of mass of X and Y :

G(X,Y ) = argmin
P∈P

1

2
ρ2(X,P ) +

1

2
ρ2(Y, P ).
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This Riemannian least squares mean is also called the Cartan, Kärcher, or Fréchet mean in the literature.
More generally, the Riemannian geodesic γ(X,Y ; t) = X#tY between X and Y of (P, g) for t ∈ [0, 1] is
expressed using the weighted matrix geometric mean G(X,Y ; 1− t, t) = X#tY minimizing

(1− t)ρ2(X,P ) + tρ2(Y, P ).

This Riemannian barycenter can be solved as

X#tY = X
1
2

(
X− 1

2 Y X− 1
2

)t
X

1
2 ,

with G(X,Y ) = X# 1
2
Y , X#tY = Y#1−tX, and ρ(X#tY,X) = t ρ(X,Y ), i.e., t is the arc length pa-

rameterization of the constant speed geodesic γ(X,Y ; t). When matrices X and Y commute, we have
X#tY = X1−tY t. We thus interpret the matrix geometric mean G(X,Y ) = X#Y = X# 1

2
Y as the

Riemannian geodesic midpoint.
Second, let us consider the matrix geometric mean as the limit of matrix quasi-arithmetic power means

which can be defined [13] as Qp(X,Y ) = (Xp + Y p)
1
p for p ∈ R, p ̸= 0, with Q1(X,Y ) = A(X,Y ) and

Q−1(X,Y ) = H(X,Y ). We get limp→0 Qp(X,Y ) = LE(X,Y ), the log-Euclidean matrix mean defined by

LE(X,Y ) = exp

(
logX + log Y

2

)
,

where exp and log denote the matrix exponential and the matrix logarithm, respectively. We have
LE(X,Y ) ̸= G(X,Y ). Consider the Loewner partial order ⪯ on the cone P: P ⪯ Q if and only if Q− P is
positive semi-definite. A mean M(X,Y ) is said operator monotone [5] if for X ′ ⪯ X and Y ′ ⪯ Y , we have
M(X ′, Y ′) ⪯ M(X,Y ). The log-Euclidean mean LE(X,Y ) is not operator monotone but the Riemannian
geometric matrix mean G(X,Y ) is operator monotone.

Third, we can define matrix power means Mp(X,Y ) for p ∈ (0, 1] by uniquely solving the following matrix
equation [13]:

M =
1

2
M#pX +

1

2
M#pY. (2)

Let Mp(X,Y ) = M denote the unique solution of Eq. 2. This equation is the matrix analogue of the scalar

equation m = 1
2m

1−pxp + 1
2m

1−pyp which can be solved as m =
(
1
2x

p + 1
2y

p
) 1

p = Mp(x, y), i.e., the scalar
p-power mean. In the limit case p → 0, this matrix power mean Mp yields the matrix geometric/Riemannian
mean [13]:

lim
p→0+

Mp(X,Y ) = G(X,Y ).

In general, we get the following closed-form expression [13] of this matrix power mean for p ∈ (0, 1):

Mp(X,Y ) = X# 1
p

(
1

2
X +

1

2
(X#pY )

)
.

Inductive means, circumcenters, and medians of several matrices. To extend these various bi-
nary matrix means of two matrices to matrix means of n matrices P1, . . . , Pn of P, we can use induction
sequences [9]. First, the n-variable matrix geometric mean G(P1, . . . , Pn) can be defined as the unique
Riemannian center of mass:

G(P1, . . . , Pn) = argmin
P∈P

n∑
i=1

1

n
ρ2(P, Pi).

This geometric matrix mean G = G(P1, . . . , Pn) can be characterized as the unique solution of∑n
i=1 log

(
G− 1

2PiG
− 1

2

)
= 0 (called the Kärcher equation), and is proven to satisfy the ten Ando-Li-Mathias

properties [1] defining what should be a good matrix generalization of the scalar geometric mean.
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Holbrook [12] proposed the following sequence of iterations to approximate G(P1, . . . , Pn):

Mt+1 = Mt# 1
t+1

Pt mod n (3)

with M1 initialized to P1. In the limit t → ∞, we get the n-variable geometric mean: limt→∞ Mt =
G(P1, . . . , Pn). This deterministic inductive definition of the matrix geometric mean by Eq. 3 allows to
prove that the geometric mean G(P1, . . . , Pn) is monotone [12]: That is, if P ′

1 ⪯ P1, . . . , P
′
n ⪯ Pn then we

have G(P ′
1, . . . , P

′
n) ⪯ G(P1, . . . , Pn). The following matrix arithmetic-geometric-harmonic mean inequalities

extends the scalar case:

H(X,Y ; 1− t, t) = ((1− t)X−1 + tY −1)−1 ⪯ G(X,Y ; 1− t, t) ⪯ A(X,Y ; 1− t, t) = (1− t)X + tY .

Now, if instead of taking cyclically the input matrices P1, . . . , Pn, P1, . . . , Pn, . . ., we choose at iteration t
the farthest matrix in P1, . . . , Pn to Mt with respect to the Riemannian distance ρ, we get the Riemannian
circumcenter [2] C(P1, . . . , Pn) which is the minimax minimizer:

C(P1, . . . , Pn) = argmin
C∈P

max
i∈{1,...,n}

ρ(Pi, C).

The sequence of iterations
Ct+1 = Ct# 1

t+1
Pfarthest(t), (4)

where
farthest(t) = arg max

i∈{1,...,n}
ρ(Ct, Pi),

initialized with C1 = P1 is such that
C(P1, . . . , Pn) = lim

t→∞
Ct.

The uniqueness of the smallest enclosing ball and the proof of convergence of the iterations of Eq. 4 relies
on the fact that the cone P is of non-positive sectional curvatures [2]: P is a Non-Positive Curvature space
or NPC space for short.

The Riemannian median minimizing argminP∈P
∑n

i=1
1
nρ(P, Pi) is proven to be unique in Riemannian

NPC spaces, and can be obtained as the limit of the following cyclic order sequence [4]:

Xkn+1 = Xkn#tk,1
P1,

Xkn+2 = Xkn+1#tk,2
P2,

... =
...

Xkn+n = Xkn+n−1#tk,n
Pn,

where tk,n = min
{
1, λk

n ρ(Pn,Xkn+n−1)

}
with the positive real sequence (λk) such that

∑∞
k=0 λk = ∞ and∑∞

k=0 λ
2
k < ∞ (e.g., λk = 1

k+1 ).
Finally, let us mention that Bini, Meini, and Poloni [6] proposed a class of recursive geometric matrix

means Gs1,...,sn−1(P1, . . . , Pn) parameterized by (n − 1)-tuple of scalar parameters, and defined recursively
as the common limit of the following sequences:

P
(r+1)
i = P

(r)
i #s1Gs2,...,sn−1

(P1, . . . , Pi−1, Pi+1, . . . , Pn) , i ∈ {1, . . . , n}.

In particular, these matrix means exhibit a unique (n − 1)-tuple for which the recursive mean
Gn−1

n ,n−2
n−1 ,...,

1
2
(P1, . . . , Pn) converges fast in cubic order (order-3 convergence). This geometric matrix mean

is called the BMP mean in the literature. Furthermore, the mean G1,1,...,1, 12
(P1, . . . , Pn) coincides with the

Ando-Li-Mathias geometric mean [1] (ALM) which convergences linearly.
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Random variables, expectations, and the law of large numbers. Although inductive means as
limits of sequences have been considered since the 18th Century (AGM by Lagrange and Gauss), this
term was only recently coined by Karl-Theodor Sturm in 2003 (see Definition 4.6 in [16]) who considered
inductive sequences to calculate probability expectations of random variables on non-positive curvature
complete metric spaces. For example, let P(P) denote the set of probability measures on P with bounded
support [16]. Let X : Ω → P be a SPD-valued random variable with probability density function pX
expressed with respect to the canonical Riemannian volume measure dω(P ) =

√
det(gP ). The expectation

E[X] and the variance V[X] of a random variable X ∼ pX are defined respectively as the unique minimizer of
C 7→ E[ρ2(X,C)] =

∫
P ρ

2(C,P )pX(P )dω(P ) and infP∈P E[ρ2(X,P )]. Consider (Xi)i∈N to be an independent

sequence of measurable maps Xi : Ω → P with identical distributions pXi
= pX , and let pn = 1

n

∑n
i=1 δXi

∈
P(P) denote the empirical distribution. Then the following empirical law of large numbers holds as n → ∞:

G(X1, . . . , Xn) → E[X].

Several proofs are reported in the literature (e.g., Proposition 6.6 of [16], Theorem 1 of [9], or Theorem
5.1 of [4]). Thus the expectation E[X] of a SPD-valued random variable can be estimated incrementally
by considering increasing sequences (Xi)i∈N of i.i.d. random vectors, and incrementally computing their
Riemannian means. Experiments demonstrating convergence to various probability law expectations pX are
reported in [9].

Closing remarks. The AHM double sequence yielding the matrix geometric mean can further be generalized
to define self-dual operators on convex functionals in Hilbert spaces [3] based on the Legendre-Fenchel
transformation (called convex geometric mean functionals). For example, the AHM iterations initialized
on a pair of non-zero complex numbers z1 = r1 e

iθ1 and z2 = r2 e
iθ2 expressed in polar forms is proven to

converge to AHM(z1, z2) =
√
r1r2 e

i
θ1+θ2

2 which involves both the scalar arithmetic mean A(θ1, θ2) and the
scalar geometric mean G(r1, r2).

To conclude, let us say that not only is it important to consider which mean we mean [10] but it is also
essential to state which matrix geometric mean we mean!
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