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Unbounded Kullback-Leibler divergence (KLD)

Also called relative entropy:

Cross-entropy:

Shannon’s entropy:
(self cross-entropy)

Reverse KLD:
(KLD=forward KLD)



Symmetrizations of the KLD

Jeffreys’ divergence (twice the arithmetic mean of oriented KLDs):

Resistor average divergence (harmonic mean of forward+reverse KLD)

Question: Role and extensions of the mean?



Bounded Jensen-Shannon divergence (JSD)

(Shannon entropy h is 
strictly concave, JSD>=0)

JSD is bounded:
Proof:

: Square root of the JSD is a metric distance (moreover Hilbertian) 



Invariant f-divergences, symmetrized f-divergences
Convex generator f, strictly convex at 1
with f(1)=0     (standard when f’(1)=0, f’’(1)=1)

f-divergences are said invariant in information geometry because they
satisfy coarse-graining (data processing inequality)

f-divergences can always be symmetrized: Reverse f-divergence for 

Jeffreys f-generator:

Jensen-Shannon f-generator:



Statistical distances vs parameter vector distances
A statistical distance D between two parametric distributions of a same
family (eg., Gaussian family) amount to a parameter distance P: 

For example, the KLD between two densities of a same exponential family 
amounts to a reverse Bregman divergence for the Bregman cumulant generator:

From a smooth C3 parameter distance (=contrast function), 
we can build a dualistic information-geometric structure



Skewed Jensen-Bregman divergences
JS-kind symmetrization of the parameter Bregman divergence:

Notation for the linear interpolation:



J-Symmetrization and JS-Symmetrization
J-symmetrization of a statistical/parameter distance D:

JS-symmetrization of a statistical/parameter distance D:

Example: J-symmetrization and JS-symmetrization of f-divergences:

Conjugate f-generator:



Generalized Jensen-Shannon divergences:
Role of abstract weighted means, generalized mixtures

Quasi-arithmetic weighted means for a strictly increasing function h:

When M=A
Arithmetic mean,
Normalizer Z is 1



Definitions: M-JSD and M-JS symmetrizations

For generic distance D (not necessarily KLD): 



Generic definition: (M,N)-JS symmetrization
Consider two abstract means M and N:

The main advantage of (M,N)-JSD is to get closed-form formula 
for distributions belonging to given parametric families 
by carefully choosing the  M-mean.
For example, geometric mean for exponential families, 
or harmonic mean for Cauchy or t-Student families, etc.



(A,G)-Jensen-Shannon divergence for exponential families

Exponential family:

Natural parameter space:

Geometric statistical mixture:

Normalization coefficient:

Jensen parameter divergence:



(A,G)-Jensen-Shannon divergence for exponential families
Closed-form formula the KLD between two geometric mixtures  in term of a 
Bregman divergence between interpolated parameters:



Example: Multivariate Gaussian exponential family
Family of Normal distributions:

Cumulant function/log-normalizer:

Sufficient statistics:

Canonical factorization:



Example: Multivariate Gaussian exponential family
Dual moment parameterization:

Conversions between ordinary/natural/expectation parameters:

Dual potential function (=negative differential Shannon entropy):





More examples: Abstract means and M-mixtures
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Summary: Generalized Jensen-Shannon divergences
• Jensen-Shannon divergence (JSD) is a bounded symmetrization of the Kullback-

Leibler divergence (KLD). Jeffreys divergence (JD) is an unbounded symmetrization
of KLD. Both JSD and JD are invariant f-divergences.

• Although KLD and JD between Gaussians (or densities of a same exponential 
family) admits closed-form formulas, the JSD between Gaussians does not have a 
closed expression, and these distances need to be approximated in applications.
(machine learning, eg., deep learning in GANs)

• The skewed Jensen-Shannon divergence is based on statistical arithmetic mixtures. 
We define generic statistical M-mixtures based on an abstract mean, and define 
accordingly the M-Jensen-Shannon divergence, and the (M,N)-JSD. 

• When M=G is the geometric weighted mean, we obtain closed-form formula for 
the G-Jensen-Shannon divergence between Gaussian distributions. Applications 
to machine learning (eg, deep learning GANs)
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