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Hyperbolic geometry [3] is more and more often used in machine learning and computer vision,
specially to embed and process hierarchical structures (e.g., [9, 8]). The five main models of
hyperbolic geometry [3] are the Poincaré upper space model, the Poincaré ball model, the Beltrami
hemisphere model, the Lorentz hyperboloid model, and the Klein ball model. These models yield
metric spaces (D, d) where D denotes the domain of the model and d(·, ·) denotes the hyperbolic
distance, a metric distance. These metric spaces are said geodesic because there exists a map
γ(p, q;α) such that

d (γ(p, q; s), γ(p, q; t)) = |s− t| d(p, q), ∀p, q ∈ D, ∀s, t ∈ [0, 1].

A closed-form expression of the geodesics in the hyperbolic Poincaré ball model can be expressed
using Möbius operations in the Möbius ball gyrovector space [2, 8].

In this note, we report a closed-form expression of the geodesics in the Klein ball model of
arbitrary dimension. Although the Klein ball model (K) is not conformal (except at the origin),
the traces of geodesics ΓK(p, q) = {(1 − α)p + αq : α ∈ [0, 1]} (called pregeodesics) are straight
line segments making it convenient for robust geometric computing (e.g., Klein hyperbolic Voronoi
diagram [5, 6]). Once a structure is computed in the Klein model, it can be converted into the
other models (e.g., [7]).

Let Bn = {x ∈ Rn : x>x < 1} be the n-dimensional unit open ball centered at the origin. The
Klein distance dK(p, q) between point p and q in Bn (hyperbolic geometry with curvature κ = −1)
is

dK(p, q) = arccosh

(
1− p>q√

(1− p>p)
√

(1− q>q)

)
.

Thus we seek a parameterization

γK(p, q;α) = (1− u(α))p+ u(α)q (1)

so that
dK (γK(p, q; s), γK(p, q; t)) = |s− t| dK(p, q).

In particular, when s = 0 and t = α, we shall have

dK (p, (1− u(α))p+ u(α)q) = αdK(p, q).
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This latter equation amounts to solve for u(α) in the equation:

a− bu(α)√
a(a− 2bu(α) + cu(α)2)

− d(α) = 0,

where

a = 1− p>p,
b = p>(q − p),
c = (q − p)>(q − p),

d(α) = cosh(αdK(p, q))

Using symbolic calculations, we find the following solution:

u(α) =
ad(α)

√
(ac+ b2)(d(α)2 − 1) + ab(1− d(α)2)

acd(α)2 + b2
. (2)

Thus we get in closed-form the Klein geodesics γK (albeit a large formula) such that

dK(γ(p, q; s), γ(p, q; t)) = |s− t| dK(p, q).

The snippet code below implements in Maxima1 the geodesics in the Klein model with a test
set.

dKlein (p , q ) := acosh ((1=p . q ) /( s q r t ((1=p . p)*(1=q . q ) ) ) ) ;

u (p , q , alpha ) := ((1=p . p) * cosh ( alpha * dKlein (p , q ) ) * s q r t (((1=p . p) * ( ( q=p) . ( q=p) )+(
p . ( q=p) ) **2) * ( cosh ( alpha * dKlein (p , q ) )

**2=1) ) +(1=p . p) * (p . ( q=p) ) * (1=cosh ( alpha * dKlein (p , q ) ) **2) ) /((1=p . p) * ( ( q=p)
. ( q=p) ) * cosh ( alpha * dKlein (p , q ) ) **2 + (p . ( q=p) ) **2) ;

gammaKlein (p , q , alpha ) :=(1=u(p , q , alpha ) ) *p+u(p , q , alpha ) *q ;

/* Test */
p : [ 0 . 5 , 0 . 2 ] ;
q : [ 0 . 1 , =0 .3 ] ;

/* 1 s t t e s t f o r Kle in g e o d e s i c s */
alpha : random ( 1 . 0 ) ;
alpha *dKlein (p , q ) ;
dKlein (p , gammaKlein (p , q , alpha ) ) ;

/* 2nd t e s t f o r Kle in g e o d e s i c s */
s : random ( 1 . 0 ) ;
t : random ( 1 . 0 ) ;
dKlein ( gammaKlein (p , q , s ) , gammaKlein (p , q , t ) ) ;
abs ( s=t ) *dKlein (p , q ) ;

1https://maxima.sourceforge.io/
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To illustrate the use of these Klein geodesics, consider computing the smallest enclosing ball
of a finite point set P = {p1, . . . , pm} in hyperbolic geometry [1]. The closed-form expression of
the Klein geodesic, allows to bypass the use of hyperbolic translations from/to the ball origin as
this was used in [4]. The algorithm for calculating an approximation of the hyperbolic smallest
enclosing ball is:

� Initialize c1 = p1

� Repeat t times: Let ci+1 = γK

(
ci, pfi ,

1
i+1

)
where pfi is the farthest point of P to ci. That

is, we have fi = arg maxj∈{1,...,m} dK(ci, pj).

The algorithm is proven to converge in [1] (i.e., limt→∞ ct = arg minc maxi∈{1,...,m} dK(pi, c))
since the hyperbolic geometry is a Hadamard space.

Additional material is available online at https://franknielsen.github.io/KleinGeodesics/
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