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Abstract. We introduce new geometrical tools to cluster data in the
Siegel space. We give the expression of the Riemannian logarithm and
exponential maps in the Siegel disk. These new tools help us to perform
classification algorithms in the Siegel disk. We also give the expression
of the sectional curvature in the Siegel disk. The sectional curvatures
are negative or equal to zero, and therefore the curvature of the Siegel
disk is non-positive. This result proves the convergence of the gradient
descent performed when computing the mean of a set of matrix points
in the Siegel disk.
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1 Complex Vectorial Autoregressive Gaussian Models

We present here the multidimensional linear autoregressive model which gener-
alize the one-dimensional model presented in [3].

1.1 The Multidimensional Linear Autoregressive Model

We assume that the multidimensional signal can be modeled as a centered sta-
tionary autoregressive multidimensional Gaussian process of order p ´ 1:

U(k) `
p´1∑
j“1

Ap´1
j U(k ´ j) “ W (k) (1)

where W is the prediction error vector which we assume to be a standard Gaus-
sian random vector and the prediction coefficients Ap´1

j are square matrices.
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1.2 Three Equivalent Representation Spaces

There are at least three equivalent spaces to represent our model parameter,
they are described in detail in [6]. The first one is the set of Hermitian Positive
Definite Block-Toeplitz matrices corresponding to the covariance matrix of the
large column vector U defined by:

U
def“ [

U(0)T , . . . , U(p ´ 1)T
]T

(2)

The second one is a product space: a HPD matrix (which characterizes the
average correlation matrix) and the coefficients

(
Ai

i

)
i“1,...,p´1

(which character-
ize the multidimensional autoregressive model). The third representation space
looks like the second one: the coefficients Ai

i are slightly modified to belong to
the Siegel disk which metric has been studied in [6,8].

1.3 A Natural Metric Coming from Information Geometry

In [6], the three equivalent representation spaces presented in Sect. 1.2 are
endowed with a natural metric coming from information geometry. Indeed, the
model assumptions done in Sect. 1.1 are equivalent to the assumption that the
large vector U described in Eq. (2) is the realisation of a Gaussian process with
zero mean and an Hermitian Positive Definite Block-Toeplitz covariance matrix.
We define a metric on this space as the restriction of the information geometry
metric on the space of Gaussian processes with zero mean and an Hermitian
Positive Definite covariance matrices. We finally transpose this metric to the
equivalent representation space constituted of a HPD matrix and coefficients in
the Siegel disks. Luckily, the metric in this space is a product metric. The metric
on the HPD manifold is the information geometry metric [6]. The metric on the
Siegel disk is described in detail in Sect. 2.

2 The Siegel Disk

In this section we present a Riemannian manifold named the Siegel disk and
introduce the Riemannian logarithm and exponential maps. These tools will be
very useful to classify data in the Siegel space, as shown in Sect. 3. We also
introduce the formula of the Siegel sectional curvature and prove it to be non-
positive which proves the convergence of classification algorithms based on mean
computations, such as the k-means algorithm. The Siegel disk generalizes the
Poincaré disk described in [3,4].

2.1 The Space Definition

Definition 1. The Siegel disk is defined as the set of complex matrices M of
shape N × N with singular values lower than one, which can also be written:

SDN “ {
M P CN×N , I ´ MMH ą 0

}
(3)
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or equally:

SDN “ {
M P CN×N , I ´ MHM ą 0

}
. (4)

We use the partial ordering of the set of complex matrices: we note A ą B
when the difference A´B is a positive definite matrix. As the Siegel disk is here
defined as an open subset of the complex matrices CN×N , its tangent space at
each point can also be considered as CN×N .

Note that another definition of the Siegel disk also exists in other papers [8],
imposing an additional symmetry condition on the matrix M : M “ MT . We
will not require the symmetry condition in our work.

Property 1. The Siegel disk can also be defined as the set of complex matrices M
with a linear operator norm lower than one: SDN “ {

M P CN×N , ~M~ < 1
}
,

where ~M~ “ supXPCN×N ,‖X‖“1 (‖MX‖).

2.2 The Metric

Square of the Line Element ds

ds2 “ trace
((

I ´ ΩΩH
)´1

dΩ
(
I ´ ΩHΩ

)´1
dΩH

)
(5)

The Scalar Product. ∀Ω P SDN ,∀v, w P CN×N :

〈v, w〉Ω “1
2
trace

((
I ´ ΩΩH

)´1
v

(
I ´ ΩHΩ

)´1
wH

)
(6)

`1
2
trace

((
I ´ ΩΩH

)´1
w

(
I ´ ΩHΩ

)´1
vH

)
(7)

The norm of a vector belonging to the tangent space is therefore:

‖v‖2
Ω “ trace

((
I ´ ΩΩH

)´1
v

(
I ´ ΩHΩ

)´1
vH

)
(8)

The Distance

d2
SDN

(Ω,Ψ) “1
4
trace

(
log2

(
I ` C1/2

I ´ C1/2

))
(9)

“trace
(
arctanh2

(
C1/2

))
(10)

with C “ (Ψ ´ Ω)
(
I ´ ΩHΨ

)´1 (
ΨH ´ ΩH

) (
I ´ ΩΨH

)´1.



696 Y. Cabanes and F. Nielsen

2.3 The Isometry

In [6], the following function is said to be an isometry for the Siegel distance
described in Eq. (9).

ΦΩ (Ψ) “ (
I ´ ΩΩH

)´1/2
(Ψ ´ Ω)

(
I ´ ΩHΨ

)´1 (
I ´ ΩHΩ

)1/2
(11)

Property 2. The differential of the isometry Φ has the following expression:

DΦΩ (Ψ) [h] “ (
I ´ ΩΩH

)1/2 (
I ´ ΨΩH

)´1
h

(
I ´ ΩHΨ

)´1 (
I ´ ΩHΩ

)1/2

(12)

Property 3. The inverse of the function Φ described in Eq. (11) is:

Φ´1
Ω (Ψ) “ ΦΩ (´Ψ) (13)

2.4 The Riemannian Logarithm Map

Riemannian Logarithm Map at 0. In [6], the logarithm map at 0 is given
by the formula :

log0 (Ω) “ V Ω (14)

with:

V “ L

((
ΩΩH

)1/2
, log

(
I ` (

ΩΩH
)1/2

I ´ (ΩΩH)1/2

))
(15)

where L (A,Q) is defined as the solution of:

AZ ` ZAH “ Q (16)

However, the expression of the logarithm map at zero given in [6] can be
greatly simplified.

Property 4. The Riemannian logarithm map of the Siegel disk at zero has the
following expression:

log0 (Ω) “ arctanh (X) X´1Ω where X “ (
ΩΩH

)1/2
(17)

Note that for ~X~ < 1, we can develop the function arctanh in whole series:

arctanh (X) “
`8∑
n“0

X2n`1

2n ` 1
(18)

Hence for all X in the Siegel disk, we can write the product arctanh (X) X´1

the following way:

arctanh (X) X´1 “
`8∑
n“0

X2n

2n ` 1
(19)

This new expression is also valid when the matrix X is not invertible.
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Fig. 1. The Poincaré disk logarithm map computation

2.5 The Riemannian Logarithm Map at Any Point

To compute the Riemannian logarithm map at a point Ω the key idea here is to
transport the problem at zero, compute a certain logarithm at zero and transport
the result back to Ω. If we want to compute the logartithm map: logΩ (Ψ), we
first transport both Ω and Ψ using the isometry ΦΩ given in Eq. (11). The point
Ω is sent to zero, and we denote Ψ

′
the image of Ψ by ΦΩ :

Ψ
′ def“ ΦΩ (Ψ) “ (

I ´ ΩΩH
)´1/2

(Ψ ´ Ω)
(
I ´ ΩHΨ

)´1 (
I ´ ΩHΩ

)1/2
(20)

Then we compute the logarithm map at zero log0

(
Ψ

′
)
:

V
′ def“ log0

(
Ψ

′) “ arctanh (X)X´1Ψ
′

where X “
(
Ψ

′
Ψ

′ H
)1/2

(21)

And finally, we transport back the logarithm to the point Ω using the differ-
ential of the isometry Φ given in Eq. (12):

V
def“ logΩ (Ψ) “ DΦ´Ω (0)

[
V

′] “ (
I ´ ΩΩH

)1/2
V

′ (
I ´ ΩHΩ

)1/2
(22)
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2.6 The Riemannian Exponential Map

Riemannian Exponential Map at 0

Property 5. The Riemannian exponential map of the Siegel disk at zero has the
following expression:

exp0 (V ) “ tanh (Y ) Y ´1V where Y “ (
V V H

)1/2
(23)

Note that for ~X~ < π
2 , we can develop the function tanh in whole series:

tanh (X) “
`8∑
n“1

22n
(
22n ´ 1

)
(2n)!

B2nX2n´1 (24)

where B2n are the Bernoulli numbers.
Hence for all X in the Siegel disk, we can write the product tanh (X) X´1

the following way:

tanh (X) X´1 “
`8∑
n“1

22n
(
22n ´ 1

)
(2n)!

B2nX2n´2 (25)

This new expression is also valid when the matrix X is not invertible.

2.7 The Riemannian Exponential Map at Any Point

To compute the Riemannian exponential map at a point Ω the key idea here
is to transport the problem at zero (as for the logarithm), compute a certain
exponential at zero and transport the result back to Ω. If we want to compute
the exponential map: expΩ (V ), we first transport the vector V at zero using the
differential of the isometry Φ given in Eq. (12):

V
′ def“DΦΩ (Ω) [V ] (26)

“ (
I ´ ΩΩH

)1/2 (
I ´ ΩΩH

)´1
V

(
I ´ ΩHΩ

)´1 (
I ´ ΩHΩ

)1/2
(27)

“ (
I ´ ΩΩH

)´1/2
V

(
I ´ ΩHΩ

)´1/2
(28)

Then we compute the exponential map at zero exp0

(
V

′
)
:

Ψ
′ def“ exp0

(
V

′) “ tanh (Y ) Y ´1V
′

where Y “
(
V

′
V

′ H
)1/2

(29)

And finally, we transport back the exponential to the point Ω using the
isometry Φ´Ω which is the inverse of isometry ΦΩ (see Property 3) and transport
the point 0 back to Ω and the point Ψ

′
back to expΩ (V ):

Ψ
def“ expΩ (V ) (30)

“ Φ´Ω

(
Ψ

′)
(31)

“ (
I ´ ΩΩH

)´1/2
(
Ψ

′ ` Ω
)(

I ` ΩHΨ
′)´1 (

I ´ ΩHΩ
)1/2

(32)
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Fig. 2. The Poincaré disk exponential map computation

2.8 The Geodesics

The expression the geodesics can be obtained using the exponential map: the
geodesic starting from Ω with velocity V is given by the application:

ζ(t) : t �→ expΩ (tV ) (33)

2.9 Sectional Curvature of the Siegel Space

We first focus on the sectional curvature at 0. We can then obtain the sectional
curvature at any point using the isometry Φ defined in Eq. (11).

Let σ be a section defined by the two first vectors of an orthogonal basis
(E1, . . . , En) of the tangent space of the Siegel disk at the point Ω “ 0.

Theorem 1. The sectional curvature at zero of the plan σ defined by E1 and
E2 has the following expression:

K(σ) “ ´1
2

(∥∥E1E
H
2 ´ E2E

H
1

∥∥2 ` ∥∥EH
1 E2 ´ EH

2 E1

∥∥2
)

(34)

As a consequence, we have:

´ 4 ď K (σ) ď 0 ∀σ (35)

The Siegel disk is therefore a Hadamard manifold. The bounds of the sec-
tional curvature provides a proof of the convergence of certain algorithms calcu-
lating the Riemannian p-mean [1] or the circumcenter [2] of a set of points on a
manifold.
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2.10 The Symmetric Siegel Disk

We defined the Siegel disk in definition 1 as the set of complex matrices with
singular values lower than one: SDN “ {

M P CN×N , I ´ MMH ą 0
}
. We recall

that another definition of the Siegel disk also exists in other papers [8], imposing
an additional symmetry condition on the matrix M : M “ MT . Note that the
symmetric Siegel disk is a totally flat submanifold of the Siegel disk. Hence the
formula of the logarithm map 2.5, the exponential map 2.7 and the sectional
curvature 2.9 computed in previous sections are still meaningful when working
in the submanifold of symmetric matrices.

3 Application to Stationary Signals Classification

An effective algorithm to estimate the model parameters from the raw data
is described in [5,7]. The classification model presented in this article has
been applied to radar clutter classification in [3,4] in the special case of one-
dimensional complex signals and in [5] in the case of simulated multidimensional
radar signals. This model will be applied in future work to stereo audio signals
classification in the case of two-dimensional real signals.
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