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Let (X ,F , µ) be a measure space where µ is a positive measure (e.g., Lebesgue or counting) with X
denoting the sample space and F the σ-algebra. Hyvärinen proposed the following divergence for estimating
non-normalized distributions using the method of score matching (Eq. 2 in [4]):

DHyv[p : q] :=
1

2

∫ ∥∥∥∥∇x log
p(x)

q(x)

∥∥∥∥2 p(x)dµ(x),

where p(x) and q(x) are two densities with full support X .
The divergence is said to be right-sided projective:

∀λ > 0, DHyv[p : λq] = DHyv[p : q],

since −∇x log λ = 0. Thus we may consider a non-normalized distribution q̃ for the right-hand-side argument
of the Hyvärinen divergence:

DHyv[p : q] = DHyv[p : q̃].

Let p = pθ1 and q = pθ2 denote two densities of an exponential family [5, 1]:{
pθ(x) = exp

(
D∑
i=1

θiti(x)− F (θ) + k(x)

)
: θ ∈ Θ

}
,

where t(x) = (t1(x), . . . , tD(x)) is a vector of sufficient statistics which are affinely independent, θ
the natural parameter space, k(x) an auxiliary carrier term defining the measure dν = exp(k(x))dµ
(i.e., dν = dµ when k(x) = 0), and F (θ) the cumulant function normalizing the density: F (θ) =

log
∫ ∑D

i=1 exp (θiti(x) + k(x)) dµ. The order of the d-dimensional exponential family (d = dim(X )) is its
number of parameters D. Let us rewrite the density of the exponential family as

pθ(x) = exp (〈θ, t(x)〉 − F (θ) + k(x)) ,

where 〈a, b〉 = a>b is the scalar product.

Since ∇x log
pθ1 (x)

pθ2 (x)
= 〈θ,∇xt(x)〉 (since 〈∇xθ, t(x)〉 = 0) with ∆θ := θ1 − θ2, the Hyvärinen divergence

becomes

DHyv[pθ1 : pθ2 ] =
1

2

∫
‖〈θ,∇xt(x)〉‖2 pθ1(x)dµ(x).

When the exponential family is natural (i.e., t(x) = x and D = d), we have ∇xt(x) = ∇xx = 1d, and we
have

DHyv[pθ1 : pθ2 ] =
1

2
‖〈θ1 − θ2, 1d〉‖2 .

In particular, when D = 1, we have DHyv[pθ1 : pθ2 ] = 1
2 (θ1 − θ2)2.
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For example, the exponential family of continuous exponential distributions (with µ the Lebesgue mea-
sure) {

pExp
λ (x) = λ exp(−λx) : λ > 0

}
is a natural exponential family with natural parameter θ = −λ and k(x) = 0. We have

DHyv[pExp
λ1

: pExp
λ2

] =
1

2
(λ2 − λ1)2.

Another example is the discrete Poisson NEF (with µ counting measure on X = {0, 1, . . .}):{
pPoiλ (x) =

λx exp(−λ)

x!
: λ > 0

}
with θ = log λ and k(x) = − log x!. We have

DHyv[pPoiλ1
: pPoiλ2

] =
1

2

(
log

λ2
λ1

)2

.

Now, consider densities of a univariate polynomial exponential family [2, 6] (PEF) with sufficient statistics
t(x) = (x, . . . , xD). The PEFs include the exponential distribution family for t(x) = x and the univariate
normal family for t(x) = (x, x2). Notice that the cumulant function F of a PEF is not available in closed
form in general.

For univariate exponential family densities (d = 1) of order D, we have

DHyv[pθ1 : pθ2 ] =
1

2

∫ ∥∥∥∥∥
D∑
i=1

∆θit
′
i(x)

∥∥∥∥∥
2

pθ1(x)dµ(x).

For the PEFs, we have t′i(x) = ixi−1 for i ∈ {1, . . . , D}. Thus the Hyvärinen divergence between two
densities of a PEF is expressed as:

DHyv[pPEF
θ1 : pPEF

θ2 ] =
1

2

D∑
i=1

D∑
j=1

∆θi∆θjijEpθ1
[
xi+j−2

]
. (1)

For the normal family [5] {pµ,σ} (D = 2), we have the natural parameter θ =
(
µ
σ2 ,− 1

2σ2

)
, and Epµ,σ [x2] =

µ2 + σ2, Epµ,σ [x3] = µ3 + 3µσ2, Epµ,σ [x4] = µ4 + 6µ2σ2 + 3σ4.
Pluggins those terms in Eq. 1 and simplifying the expression, we get:

DHyv[pNor
µ1,σ1

: pNor
µ2,σ2

] =
(σ2

1 − σ2
2)2

2σ2
1σ

4
2

+
(µ1 − µ2)2

2σ4
2

. (2)

Observe that it is an asymmetric divergence: DHyv[pNor
µ1,σ1

: pNor
µ2,σ2

] 6= DHyv[pNor
µ2,σ2

: pNor
µ1,σ1

].
This formula can be verified with the following Maxima software code which calculates symbolically the

definite integral:

p(x,m,s):=1.0/(sqrt(2*%pi)*s)*exp(-(((x-m)/s)**2)/2);

assume(s1>0);

assume(s2>0);

assume(m1);

assume(m2);

integrate((1/2)*(derivative(log(p(x,m1,s1)/p(x,m2,s2)),x,1)**2)*p(x,m1,s1),x,-inf,inf);

ratsimp(%);
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For higher degree PEFs, the cumulant function F is not available in closed form. We can however
estimate the terms Eij = Epθ1

[
xi+j−2

]
using Monte Carlo integration with rejection sampling of the proposal

distribution pθ1 . Rejection sampling does not require the normalization constant exp(F (θ1)). Therefore we
approximate by Monte Carlo the terms Eij by i.i.d. sampling x1, . . . , xs ∼ pθ1 using rejection sampling, and
we get

Êij :=
1

s

s∑
l=1

xi+j−2l .

Then we estimate the Hyvärinen divergence by

D̂Hyv[pPEF
θ1 : pPEF

θ2 ] :=
1

2

D∑
i=1

D∑
j=1

∆θi∆θjijÊij .

In [6], the double-sided projective γ-divergence [3] is used to discriminate between two PEF densities.
The estimation of the Hyvärinen divergence provides an alternative method to discriminate two densities of
a PEF.
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