
9
Supervised learning: Practice and theory

of classification with the k-NN rule

A concise summary is provided at the end of this chapter, in §9.8.

9.1 Supervised learning

In supervised learning, we are given a labeled training set Z = {(xi, yi)}i with

yi ∈ ±1 (the ground truth labeled data) and the task is to learn a classifier so

that we can classify new unlabeled observations of a testing set Q = {x′i}i. We

shall see in this chapter a very simple algorithm that is nonetheless provably

good to classify data: The k-Nearest Neighbor rule, or k-NN rule for short.

When the training set has only two classes, we deal with binary classification,

otherwise it is a multi-class classification problem. Statistical learning assumes

that both the training set and the testing set are independently and identically

sampled for an arbitrary but fixed unknown distribution.

9.2 Nearest neighbor classification: NN-rule

The nearest neighbor classification rule assigns a label to an element x as

the class l(x) ∈ {−1,+1} where l(x) is the label of the closest labeled point

242 9. Supervised learning: Practice and theory of classification with the k-NN rule

NN(x) in the training set: l(x) = l(NNZ(x)). That is, we have l(x) = ye
for e = argminni=1 D(x, xi) where D(·, ·) is an appropriate distance function

(usually taken as the Euclidean distance). Let us notice that in case there exist

several points yielding the same minimal distance, we choose arbitrarily one of

those points. For example, we may use the lexicographic order on Z, and report

the lowest index point of Z in case of nearest neighbor ties. Thus the notion

of “nearest neighbor” is defined according to an appropriate distance function

D(·, ·) between any two elements. For example, we have already surveyed in

the previous chapters, the Euclidean distance D(p, q) =
√∑d

j=1(p
j − qj)2 or

a generalization called the Minkowski distances Dl(p, q) =
(∑d

j=1 |p
j − qj |l

) 1

l

(metrics when l ≥ 1) for numerical attributes, and the Hamming distance

DH(p, q) =
∑d

j=1(1 − δpj (qj)) =
∑d

j=1 1[pj 6=qj] for categorical attributes

(agreement distance). We denote by δx(y) = 1 the Dirac function that is equal

to 1 if and only if y = x, and 0 otherwise.

l → +∞

l = 2

l = 1

O

Figure 9.1 Minkowski balls {x ∈ R
d | Dl(O, x) ≤ 1} with Dl(p, q) =(∑d

j=1 |p
j − qj |l

) 1

l

= ‖p − q‖l for different values of l ≥ 1. For l = 2, we

get the ordinary Euclidean ball. For l = 1, we obtain the Manhattan ball (with

a “square” shape), and when l → +∞ we tend to a square shape, oriented 45

degrees apart the Manhattan ball.

9.2 Nearest neighbor classification: NN-rule 243

We classify t = |Q| new unlabeled observations of the testing set by

answering t nearest neighbor (NN) queries in X. It is crucial to answer these

queries as fast as possible, at least in sub-linear time so that we can beat

the naive algorithm that scans all the points of X. There exists many data-

structures to answer such NN queries but as the dimension d increases, it

becomes (provably) difficult to beat significantly the naive algorithm. This

is the phenomenon that bears the name of the curse of dimensionality!

Historically, this curse of dimensionality was introduced by Bellman, the

founder of the dynamic programming paradigm.

9.2.1 Optimizing Euclidean distance computation for
nearest neighbor queries

We often choose the Euclidean distance as the underlying distance, and the

NN queries can be optimized in practice. Indeed, let us first notice that a

distance or a monotonically increasing function of this distance, like the square

function, does not change the relative ordering of points according to a query

point q. That is, we have l = argminni=1 D(q, xi) = argminni=1 D
2(q, xi). This

is useful observation as the squared Euclidean distance is easier to handle

mathematically. Indeed, computing the squared Euclidean distance between

two vector attributes of d dimensions amounts to compute d subtractions,

d square operations, and d − 1 sums. That is 3d − 1 elementary arithmetic

operations. We can also interpret the squared Euclidean distance (or any

other norm-based induced distance) as D2(q, xi) = 〈q − xi, q − xi〉, where

〈x, y〉 = x⊤y is the scalar product (technically, the Euclidean space can also

be interpreted as a Hilbert space equipped with the dot product). Computing

a scalar product between two d-dimensional vectors requires 2d− 1 operations.

Now, if we preprocess the computation of the squared norms norm2(p) =

〈p, p〉 =
∑d

j=1(p
j)2 in (2d− 1)n time for the points of the training set Z, with

|Z| = n, then we can compute D2(p, q) as D2(p, q) = norm2(p) + norm2(q) −

2〈p, q〉: That is, it amounts to perform t scalar products for each query of the

test set Q with |Q| = t. To classify the t unlabeled data, the naive method

requires (3d − 1)nt while the method that preprocess by computing the n + t

norms in (2d−1)(n+t) time requires an overall time (2d−1)(n+t)+t(2+2d−1).

Therefore for t≪ n≪ d, the obtained speed-up is 3dnt
4dt = 3n. In practice, one

can use the Graphical Processing Units (GPUs) of modern PCs that allows to

quickly compute scalar product internally.

244 9. Supervised learning: Practice and theory of classification with the k-NN rule

9.2.2 Nearest Neighbor (NN) rules and Voronoi diagrams

Figure 9.2 Example of a planar Voronoi diagram that partitions the space

into proximity cells.

For a given training set Z with n = |Z| d-dimensional numerical data

elements, the space R
d is partitioned into n equivalence classes for the nearest

neighbor labeling function (where the argmin is constant). These are precisely

the Voronoi cells that decompose the space into proximity cells. We have

already introduced the Voronoi diagrams in the k-means clustering chapter. We

quickly recall that Voronoi diagram of a finite set of points X = {p1, ..., pn}

of Rd (called the Voronoi generators) partitions the space into Voronoi cells

that are proximity cells. A Voronoi cell V (xi) is defined as the set of points of

R
d that is closed to xi than to any other generator xj (with j 6= i). That is,

V (xi) = {x ∈ R
d | ‖x − xi‖ ≤ ‖x − xj‖ ∀j 6= i}. Figure 9.2 depicts a planar

Voronoi diagram (observe that there are unbounded cells).

Here, we consider only bi-chromatic generators (two classes ’-1’ and ’+1’, or

red/blue sites) for the Voronoi diagram. Thus the bichromatic Voronoi diagram

decomposes the space into two types of colored cells, and the boundary between

these color changes indicates the decision boundary of the NN classifier.

Figure 9.3 illustrates these geometric aspects. Note that in practice one cannot

9.2 Nearest neighbor classification: NN-rule 245

(a) (b)

(c) (d)

Figure 9.3 k-NN classification rules and bi-chromatic Voronoi diagrams:

(a) bichromatic Voronoi diagram, (b) Voronoi bi-chromatic bisectors, classifier

using the 1-NN rule (classes are monochromatic union of Voronoi cells), and

(d) boundary decision defined as the interface of these two classes.

compute Voronoi diagrams in high dimension because of their exponential

combinatorial complexity. Nevertheless, the facets of the bi-chromatic Voronoi

diagrams that support cells of different colors define precisely the decision

boundary. Thus the NN-rule has a piecewise linear decision boundary since

bisectors (i.e., the locii of points at equidistance to two generators) are

hyperplanes.

246 9. Supervised learning: Practice and theory of classification with the k-NN rule

9.2.3 Enhancing the NN-rule with the k-NN rule by
voting!

In order for the classifier to be resilient to noisy data-sets (say, imprecise input

and outliers), we may class a new observation q by choosing among the first k

nearest neighbors of X, the dominant class. For binary classification, it is useful

to choose an odd value for k in order to avoid vote ties. In practice, increasing

k allows one to be tolerant to outliers in the data-set, but the drawback is that

the decision boundary becomes more fuzzy as k increases. There exit many

techniques or rules of thumbs to choose the most appropriate value of k for

this k-NN rule. For example, the cross-validation method that uses part of

the training set to train, and the remaining part to test. Note that the k-NN

voting rule generalizes the NN-rule (by choosing k = 1, NN=1-NN). When

dealing with multi-classes, the rule consists in choosing the dominant class

inside the k-NNs. Technically speaking, the space R
d can also be decomposed

into elementary cells, the k-order Voronoi cells (see exercise 9.9), where inside a

cell, the k closest neighbor sites does not change. The k-order Voronoi diagram

is an affine diagram and the k-NN decision boundary is also piecewise linear.

9.3 Evaluating the performance of classifiers

We described a family of piecewise linear classifier based on the k-NN rule to

classify observations using the labeling function lk(x) that returns the majority

class of the k nearest neighbor in the training set Z of point to classify, x. In

order to choose the best classifier in that family, one needs to be able to assess

the performance of classifiers.

9.3.1 Misclassification error rate

The misclassification rate or error rate on a testing set Q with t unlabeled

observations to classify is simply defined by:

τError =
#misclassified

t
= 1−

#correctly classified

t
= τmisclassification

This indicator is not discriminative when the class label proportions are

unbalanced (in the testing set or even in the training set). For example, when

we classify email messages into Cspam for spam and Cham for non-spam (good

9.3 Evaluating the performance of classifiers 247

emails), we notice that we often have far less spams than regular emails. Thus

if we seek to minimize the misclassification error rate, then it would suffice to

classify non-spam all emails, and thus achieve a good error rate! This highlights

the problem of taking into consideration the relative proportion of classes.

9.3.2 Confusion matrices and true/false positive/negative

The confusion matrix M = [mi,j]i,j stores its coefficients mi,j of well-classified

rates when x is classified as Ci (estimated class) with the ground-truth class

being Cj :

M = [mi,j]i,j , mi,j = τ
(x predicted as Ci|x∈Cj)

For binary classification (i.e., two classes), consider the following 2×2 array

that indicates the four cases with

True prediction is correct

False prediction is wrong

Positive predicted label is class C+1

Negative predicted label is class C−1

Predicted label

C+1 C−1

true label C+1 True Positive (TP) False Negative (FN)

C−1 False Positive (FP) True Negative (TN)

The diagonal of the confusion matrix M indicates the successful rate for all

classes. This misclassified data can either by false positive (FP) or false negative

(FN):

– A false positive (FP) is an observation x misclassified as C1 (positive class)

albeit it is C−1 (negative class). “Positive” means ‘+1’ in this context.

– Similarly, a false negative (FN), is an observation x misclassified as C−1

(negative class) albeit it is C+1 (positive class). In this context, “negative”

means ‘-1’.

The false positive are also called type I error, and the false negative are

called type II error. Similarly, we define the true negative (TN) and the false

negative (TP). Thus, the error rate can be rewritten as:

τerror =
FP + FN

TP + TN+ FP + FN
= 1−

TP + TN

TP + TN+ FP + FN
,

since TP + TN+ FP + FN = t = |Q|, the number of queries to classify.

248 9. Supervised learning: Practice and theory of classification with the k-NN rule

9.4 Precision, recall and F -score

We define the precision as the proportion of true positive in the true class (the

TP and FP data):

τPrecision =
TP

TP + FP
.

We can easily check that 0 ≤ τPrecision ≤ 1. The precision is the percentage

of correctly classified elements in the positive class.

The recall rate is the proportion of true +1 (TP) in the data classified +1

(TP and FN):

τrecall =
TP

TP + FN
.

The F -score is a rate that is constructed in order to give as much weight to

the false positive as to the false negative. It is defined as the harmonic mean1,

and is often used in practice:

τF-score =
2× τPrecision × τRecall
τPrecision + τRecall

In practice, we choose classifiers that yield the best F -scores. For example,

for several odd values of k, one can evaluates the k-NN classification rule using

the F -score, and finally choose the best value of k that gave the best F -score.

9.5 Statistical machine learning and Bayes’
minimal error bound

Nowadays, in the era of big data, it is reasonable to assume that both the

training set Z and the test set Q can be modeled by statistical distributions

(from generative models having probability densities). Classifier performances

can then be studied mathematically. Let us assume that X (from Z =

(X,Y)) and Q are two data sets, called observations, that are identically and

independently distributed (iid) samples from random variablesX, Y and Z. We

write X ∼iid D to state that X has been sampled iid. from a probability law D

(say, a Gaussian distribution). An univariate distribution has its support in R,

the real line. Otherwise, we have multivariate distributions (say, with support in

R
d). We can interpret X as a random vector of dimension n× d. Let us recall

1 The harmonic mean is defined by h(x, y) = 1
1

2

1

x
+ 1

2

1

y

= 2xy

x+y
. It is often used to

average ratio quantities.

9.5 Statistical machine learning and Bayes’ minimal error bound 249

the probability fact that two random variables X1 and X2 are independent

iff. Pr(X1 = x1, X2 = x2) = Pr(X1 = x1)× Pr(X2 = x2). Statistical modeling

allows to considerX as a statistical mixture. The density of a statistical mixture

can mathematically be written as: m(x) = w1p1(x) + w2p2(x) with w1 and

w2 a priori probabilities of belonging to classes C1 and C2 (w1 = 1 − w2),

and p1(x) = Pr(X1|Y1 = C1) and p2(x) = Pr(X2|Y2 = C2) the conditional

probabilities. We seek for a classifier that yields a good performance in the

large sample limit: That is, asymptotically when n→ +∞.

9.5.1 Non-parametric probability density estimation

q

B5(q)

r5(q)

Figure 9.4 Illustration of a k-NN query for k = 5. The ball covering the

k-NN has radius rk(q). The radius allows to estimate locally the underlying

distribution of X by p(x) ≈ k
nV (Bk(x))

∝ k
nrk(x)d

.

Given an iid observation set X = {x1, ..., xn} that we assume sampled from

a fixed but unknown density p(x), we seek to model the underlying distribution.

For a parametric law p(x|θ) (that belongs to a family of distributions indexed

by a parameter vector θ), this amounts to estimate the parameter θ of this

distribution. For example, for a Gaussian distribution p(x|θ = (µ, σ2)), we

estimate with the maximum likelihood estimator (MLE) the mean as µ̂ =
1
n

∑n

i=1 xi and the (unbiased) variance as v = σ2 with σ̂2 = 1
n−1

∑n

i=1(xi− µ̂)2.

When the distributions is not indexed by a fixed-dimensional parameter, we

say that the distribution is non-parametric. The parametric distributions are

often (but not necessarily) unimodal2 and these models lack flexibility to model

2 The modes of a density function are its local maxima.

250 9. Supervised learning: Practice and theory of classification with the k-NN rule

complex multimodal density. The non-parametric density modeling method is

far more flexible since it allows to model any smooth density, including all

multimodal smooth distributions. We state a key theorem in non-parametric

statistical modeling:

Theorem 10

The balloon estimator allows to approximate a smooth density p(x) with

support in R
d by p(x) ≈ k

nV (B) , where k is the number of samples of X that is

contained in the ball B, and V (B) its volume.

Proof

Let PR denote the probability that a sample x falls inside a region R: PR =∫
x∈R p(x)dx. The probability that k of n samples fall inside R is thus given by

the binomial law:

P
(k)
R =

(
n

k

)
P k
R(1− PR)

n−k,

and the expectation of k is E[k] = nPR. Thus the maximum likelihood estimator

P̂R for PR is k
n
. Assume the density is continuous and the that region R is small

enough so that p(x) can be assumed to be constant in R. Then, we have:

∫

x∈R
p(x)dx ≈ p(x)VR,

with VR =
∫
x∈R dx the region volume. Thus the estimator of the density is

p(x) ≈ k
nV

.

We can apply this ballon estimator theorem in two ways:

– First, we fix the ball B radius (and henceforth its volume V (B)), and we

count the number of points falling inside B for a given position x (this

generalizes the 1D histogram method for approximating smooth univariate

densities), or

– Second, we fix the value of k, and we seek the smallest ball centered at X

that exactly contains k points. This approach is called the non-parametric

estimation by k-NNs. Notice that for each different value of k, we have a

different ballon estimator.

Let rk(x) denote the radius of the covering ball Bk(x). The volume Vk(x)

is proportional to rk(x)
d up to a multiplicative constant that only depends on

the dimension: Vk(x) = cdrk(x)
d ∝ rk(x)

d.

9.5 Statistical machine learning and Bayes’ minimal error bound 251

9.5.2 Probability of error and Bayes’ error

First, let us observe that any classifier will necessarily have a non-zero

misclassification rate since the distributions X±1 of the two classes share the

same support: Thus we can never be 100% sure that we have correctly labeled

a sample: A misclassification error always exist! In Bayesian decision theory

(i.e., assuming class a priori probabilities and class conditional probabilities),

the probability of error is the minimal error of a classifier:

Pe = Pr(error) =

∫
p(x)Pr(error|x)dx,

with

Pr(error|x) =

{
Pr(C+1|x) rule decided C−1,

Pr(C−1|x) rule decided C+1

The Bayesian error generalize the error probability by taking into account

a cost matrix [ci,j]i,j for each potential classification scenario: Matrix coefficient

ci,j denotes the cost of classifying a new observation x in class Cj knowing that

x belongs to class Ci. The Bayesian error minimizes the expected risk, and

coincides with the probability or error Pe when one chooses ci,i = 0 (no penalty

when correctly classified) and ci,j = 1 (unit penalty cost for misclassification)

for all j 6= i.

Recall that Bayes’ fundamental identity (as known as Bayes’s rule or

Bayes’s theorem) is:

Pr(Ci|x) =
Pr(x|Ci)Pr(Ci)

Pr(x)

This can be easily shown using the chain rule property of probabilities:

Pr(A ∧B) = Pr(A)Pr(B|A) = Pr(B)Pr(B|A)⇒ Pr(B|A) =
Pr(B)Pr(B|A)

Pr(A)
.

The optimal rule for Bayesian classification that minimizes the probability

of error is the maximum a posteriori (MAP for short) rule: We classify x to

class Ci if and only if:

Pr(Ci|x) ≥ Pr(Cj |x).

In other words, we choose the class that maximizes the a posteriori

probability. By using Bayes’ identity and by canceling the common denominator

term Pr(x), this amounts to choose class Ci such that:

wiPr(x|Ci) ≥ wjPr(x|Cj), ∀j 6= i.

252 9. Supervised learning: Practice and theory of classification with the k-NN rule

Since we neither know the conditional probability laws Pr(x|Ci) nor the a

priori laws, we need to estimate them from observations in practice. We can

estimate non-parametrically these distributions by using the balloon estimator

that uses the nearest neighbor structures as follows: First, let us consider

without loss of generality, the case of two classes C±1. We calculate the prior

probabilities from the class frequencies of the observations:

Pr(C±1) = w±1 =
n±1

n
.

Then we compute the class-conditional probabilities as follows:

Pr(x|C±1) =
k±1

n±1Vk

,

with Vk the volume of the ball that cover the k-NNs of x.

Similarly, the non-conditional density (mixture of two distributions) can be

estimated using the k-NNs by:

m(x) ≈
k

nVk(x)

We deduce the a posteriori probabilities using the MAP Bayesian’s rule:

Pr(C±1|x) =
Pr(x|C±1)Pr(C±1)

Pr(x)
=

k±1

n±1Vk

n±1

n

k
nVk

=
k±1

k
.

Hence, we have proved that the voting rule of the k-NN classification rule

is sound! We shall now quantify the relative performance of the k-NN classifier

compared to the minimum error probability Pe.

9.5.3 Probability of error for the k-NN rule

When both the size of the training set and the size of the testing set become

large enough, asymptotically tending to infinity (t, n → +∞), the probability

of error Pe(k−NN) of the k-NN rule is a worst twice the minimum probability

of error Pe (induced by the MAP rule if one truly knew the class a priori

probabilities w±1 and class-conditional probabilities p±1(x)):

Pe ≤ τerror(NN) ≤ 2Pe

For the the multi-class case (m ≥ 2 classes) and the NN-rule, one can further

prove that we have the following guaranteed upper-bound:

Pe ≤ τerror(NN) ≤ Pe

(
2−

m

m− 1
Pe

)
.

9.6 Implementing nearest neighbor queries on a computer cluster 253

Theorem 11

The optimal Bayesian MAP rule can be approximated by the k-NN voting rule

within a multiplicative error factor of 2 when we estimate non-parametrically

the class probabilities using the k-NN balloon estimator.

Let us notice that when the dimension is large, we need in practice many

samples to get this theoretical bound. Once again, this is the phenomenon

of the curse of dimensionality that explains that in high-dimensional spaces,

problems become exponentially more difficult to solve!

9.6 Implementing nearest neighbor queries on a
computer cluster

Let us consider P units of computation (UCs, or Processing Elements,

PEs) with distributed memory. To classify a new query q, we shall use the

decomposable property of the k-NN query: That is, we can partition arbitrarily

X =
⊎p

l=1 Xl into pairwise disjoint groups, and we always have:

NNk(x,X) = NNk(x,∪
p
l=1NNk(x,Xl)).

On P processors, we partition X into P groups of size n
P

(horizontal

partitioning3), and answer locally the queries NNk(x,Xi) on each processor.

Finally, a master processor receives the kP elements from the slave processes,

and perform a k-NN query on that aggregated set. Thus we speed-up the

O(dnk)-time naive sequential algorithm (P = 1), and obtain a parallel query

algorithm in time O(dk n
P
) + O(dk(kP)). When kP ≤ n

P
(that is, P ≤

√
n
k
),

we obtain an optimal linear speed-up in O(P).

9.7 Notes and references

For statistical machine learning and more details concerning the k-NN rule,

we recommend the textbook [43]. The performance of the k-NN rule has first

been studied in 1967 [21]. The k-NN queries are well-studied but a difficult

problem of computational geometry in practice, specially in high-dimensions [4].

3 For very large dimensions, we may consider vertical partitioning that splits
blockwise the dimension of data among the distributed memories.

254 9. Supervised learning: Practice and theory of classification with the k-NN rule

In practice, graphics processing units (GPUs) are very well-suited for fast k-

NN queries [34] using the built-in inner product facilities. An algorithm is said

output-sensitive when its complexity can be analyzed using both the input

size and the output size. An output-sensitive algorithm has been proposed

for computing the decision region between two classes of points in the plane,

see [15]. One can relax the exact k-NN queries to the problem of finding within a

constant multiplicative factor 1+ǫ the ǫ-NNs. The main advantage of classifying

with the k-NN rule is that it is easy to program, can be straightforwardly

parallelized, and that it guarantees asymptotically a performance bound with

respect to Bayes’ minimal misclassification error. In practice, one has to choose

the right value of k for the k-NN rule: For large values of k, the decision

boundary gets smoother and it yields a more robust non-parametric estimation

of conditional probabilities, but it costs more time to answer queries and the

non-parametric becomes less local!

In practice, classification using big data-sets exhibits experimentally an

empirical law of diminishing returns: That is, the larger the size of the

training set, the smaller the relative improvement of performance. This

observed phenomenon is depicted schematically in Figure 9.5. This is due to

the fact that the identically and independently sampled labeled observations

assumption does not hold in practice. Bayes’ error provides a lower bound

on the performance of any classifier in statistical machine learning. It is often

hard to calculate explicitly Bayes’ error or the probability of error for statistical

models in closed-form formula. Thus one rather seeks to upper bound Bayes’

error using closed-form formula [72].

There exists numerous extensions of the k-NN rule. One can adjust for

example the voting rule among the k neighbors by taking a weighted average

vote [75]. We can prove that in high dimensions the k-NN boundary is piecewise

linear by studying bichromatic Voronoi diagrams in high dimensions. However,

computing such high-dimensional Voronoi diagrams are intractable in practice

as they can have a combinatorial complexity in O(n⌈
d
2
⌉) time (already quadratic

for d = 3), where ⌈x⌉ is the ceil function (that returns the smallest integer

greater or equal to x).

Let us recall that the k-NN classification rule guarantees asymptotically an

error factor of 2 compared to the optimal MAP Bayesian rule but that this

classifier needs to store in memory all the training set. That can be prohibitive

for large data-sets. Another renown classification technique are the Support

Vector Machines (SVMs) that stores only d+1 points in dimension d for linearly

separable bichromatic point sets. When classes are not linearly separable, one

can use the so-called kernel trick to embed features in a higher-dimensional

space so that it becomes separable [43] in that space. It is always possible to

find such a kernel to separate classes.

9.7 Notes and references 255

Training

set

size

Testing

Error

1M 10M 100M

optimal

Bayes’ error

5.1%
5.1% 5.01%

5%

Figure 9.5 In practice, classification using big data exhibits experimentally a

law of diminishing returns: The larger the size of the training set, the smaller the

relative improvement of performance. This is due to the fact that the identically

and independently sampled labeled observations assumption does not hold.

Bayes’ error provides a lower bound on the performance of any classifier in

statistical machine learning.

To conclude, let us discuss about model complexity, bias and variance of

learning machines, and prediction error. In Chapter 5, we quickly describe the

linear regression to motivate the use of linear algebra in data science. Let us

compare classification by regression with classification by k-NN as follows:

– regression model: The model complexity of a linear regression model is

d + 1, the number of coefficients defining the fitted hyperplane. Regression

learning machines have low variance (meaning stable with respect to input

perturbation) but high bias (meaning not tight to the true separation of

classes).

– k-NN model: The model complexity of a k-NN classifier is d× n, very large

since dependent on the input size n of the training set. The properties of

the k-NN classifier is to have low bias since it fits well the class separation

boundary but it has high variance since a single point perturbation of the

training set can significantly affects the decision boundary of the k-NN

classifier.

Figure 9.6 illustrates the bias/variance properties of learning machines

according to their model complexities. In practice, one has to choose the proper

model complexity of a learning machine. The higher the model complexity the

lower the prediction error on the training sample. However, at some point,

there is an overfitting phenomenon, and the prediction error on the test

sample increases instead of continuing to decrease. Since we are interested

256 9. Supervised learning: Practice and theory of classification with the k-NN rule

in minimizing the generalization error (and not on minimizing error on the

training sample, which can be optimally reaching zero for the k-NN classifier),

the ideal model complexity should be chosen so as to minimize the prediction

error on the test sample (see Figure 9.6).

low highmodel complexity

prediction

error

high bias

low variance low bias

high variance

regression k-NN

training sample

test sample

Figure 9.6 Model complexity, bias and variance of learning machines, and

prediction error.

9.8 Summary

The k-NN classification rule labels a new observation query q from a test

set by choosing the dominant class among the k nearest neighbors of q in

the training set. One evaluates the performance of a classifier by calculating

its F -score that is the harmonic mean of the precision rate and the recall

rate. This yields a single quality value that takes into account the four

different cases that can occur when classifying observations in one of either

two classes (false/true-positive/negative). In statistical machine learning, a

classifier can never beat the optimal Bayes’ error (or the probability of

error), and the 1-NN guarantees asymptotically an error factor of 2. Since the

nearest neighbor queries are decomposable queries, meaning that NNk(q,X1 ∪

X2) = NNk(NNk(q,X1),NNk(q,X2)), the k-NN classification rule can be easily

parallelized on a distributed memory architecture like a computer cluster. One

of the drawback of the k-NN rule is that it needs to store all the training set

in order to classify new observations.

9.9 Exercises 257

Processing code for displaying the nearest neigh-
bor classification rule

Figure 9.7 displays a snapshot of the processing.org program.

Figure 9.7 Snapshot of the processing code for displaying the nearest

neighbor decision border.

WWW source code: NNDecisionBoundary.pde

9.9 Exercises

Exercise 1: Pruning the boundary decision of the nearest neighbor classifier

Prove that when an element of the training set has its neighboring Voronoi

cells (called natural neighbors) of the same class, then this sample can be safely

removed without changing the boundary decision of the NN classification rule.

How to prune the training set for the k-NN rule?

258 9. Supervised learning: Practice and theory of classification with the k-NN rule

Exercise 2: * Probability of error for conditional Gaussian laws

Let us consider balanced a priori probabilities w1 = w2 = 1
2 and conditional

probabilities following univariate Gaussian distributions X1 ∼ N(µ1, σ1) and

X2 ∼ N(µ2, σ2). Recall that the probability density of a normal distribution

is p(x;µ, σ) = 1
σ
√
2π

exp(− (x−µ)2

2σ2).

– Calculate exactly the probability of error when Pe when σ1 = σ2,

– Calculate Pe using the standard normal cumulative distribution function Φ(·)

when σ1 6= σ2.

– Since it is difficult to compute Pe in closed-form formula, using the

mathematical rewriting min(a, b) = a+b−|b−a|
2 with the following inequality

min(a, b) ≤ aαb1−α, ∀α ∈ (0, 1) when a, b > 0, deduce an upper-bound

formula in closed-form bounding Pe for Gaussian distributions.

Exercise 3: ** The k-NN rules and the order-k Voronoi diagrams [60]

Consider a finite point setX = {x1, ..., xn}. Show that the decomposition of the

space Rd induced by the first k nearest neighbors yield convex polyhedral cells.

We define the k-order Voronoi diagram as the partition of space induced by all

the
(
n
k

)
Xi ⊂ 2X sub-sets of X for the following distance function: D(Xi, x) =

minx′∈Xi
D(x′, x). That is, the k-order Voronoi diagram is the collection of non-

empty cells Vk(Xi) defined by Vk(Xi) = {x | D(Xi, x) ≤ D(Xj , x), ∀i 6= j}

(with |Xl| = k for all l). How one can simplify the boundary decision of the

k-NN classification rule?

Exercise 4: ** Sensitivity of the k-NN classification rule with respect to the

magnitude order of axes

The performance of a classifier for the nearest neighbor classification rule is

quite sensitive to a rescaling of axis since it may change significantly the

Euclidean distance. In practice, one has to find a good weighting rule on the

attributes (feature weighting) to calibrate the “Euclidean distance”: Dw(p, q) =√∑d

j=1 wj(pj − qj)2. Study different methods of attribute rewriting and

discuss on their performance [43] (refer to Mahalanobis distance with diagonal

precision matrix as well).

