Introduction to HPC with MPI for Data Science

L1 : I. Introduction to High Performance Computing (HPC)
followed by
[I. Introduction to C++ and Unix

Frank Nielsen

Frank.Nielsen®@acm.org

—

Introduction
to HPC with

MPI for Data
Science

https://franknielsen.github.io/HPC4DS/
https://www.springer.com/gp/book/9783319219028

https://franknielsen.github.io/HPC4DS/
https://www.springer.com/gp/book/9783319219028

The objectives of these lectures is to ...

1. design and analyze parallel algorithms on
computer clusters (— distributed memory)
Algorithms for Data Science

2. implement these algorithms in C++/STL with
the standard and the library Message Passing Interface (MPI)

3. debug and execute these programs on machine clusters (— Unix, Shell
+ command lines)

Overview of the syllabus and hands-on sessions

8 blocks L to Lg

>

programming in C++ with the Standard Template Library (STL)

program parallelization with the Message Passing Interface (MPI), and
key concepts of parallelism :
— topologies, communications, collaborative computing, etc.

data analysis on computer clusters :

exploratory research (clustering)
supervised learning (classification)
linear algebra (linear regression)
graphs (social network analysis)

nalb ol e

critical evaluation of results (Data Science) and performance analysis

First part :

Introduction to HPC

What is High Performance Computing (HPC)?

» HPC = Sciences of supercomputers (http://www.top500.0rg/)
Top 1 : Sunway TaihuLight, National Supercomputing Center in Wuxi,
China.
125 PetaFLOPS (PFLOPS), 10+ millions of cores... and 15 Megawatts of
power
1 MW = 100 euros/hour or 1 million euros/year

» but green HPC also evaluates the performances in MFlops/Watt,
http://www.greenb500.org/

» HPC = the domain including paradigms of parallel programming ,
programming languages, software tools, information systems, with
dedicated conferences (ACM/IEEE Super Computing), etc.

http://www.top500.org/
http://www.green500.org/

RANK SITE

1

National Super Computer
Center in Guangzhou
China

DOE/SC/0ak Ridge National
Laboratory
United States

DOE/NNSA/LLNL
United States

RIKEN Advanced Institute for
Computational Science (AICS)
Japan

DOE/SC/Argonne National
Laboratory
United States

LINPACK benchmark
Rpeak = theoretical maximal performance.
http://www.top500.0rg/project/top500_description/

SYSTEM CORES
Tianhe-2 [MilkyWay-2) - TH-IVB-FEP Cluster, Intel 3,120,000
Xeon E5-2692 12C 2.200GHz, TH Express-2, Intel

Xeon Phi 31S1P

NUDT

Titan - Cray XK7 , Opteron 6274 16C 2.200GHz, Cray 560,640
Gemini interconnect, NVIDIA K20x

Cray Inc.

Sequoia - BlueGene/Q, Power BQC 16C 1.60 GHz, 1,572,864
Custom

IBM

K computer, SPARCé4 VIlIfx 2.0GHz, Tofu interconnect 705,024
Fujitsu

Mira - BlueGene/Q, Power BQC 16C 1.60GHz, Custom 786,432

IBM

In April 2016, top 5 supercomputers in the world...

RMAX
(TFLOP/S)

33.862.7

17,590.0

17,173.2

10,510.0

8,586.6

: Rmax = maximal performance obtained

RPEAK
(TFLOP/S)

54,902.4

27,1125

20,132.7

11,280.4

10,066.3

POWER
(KwW)

17,808

8,209

7,890

12,660

3,945

http://www.top500.org/project/top500_description/

In April 2017, top 5 supercomputers in the world

Rank Site

1

National Supercomputing
Center in Wuxi
China

National Super Computer
Center in Guangzhou
China

DOE/SC/0zk Ridge
National Laboratory
United States

DOE/NNSA/LLNL
United States

DOE/SC/LBNL/NERSC
United States

Joint Center for Advanced
High Performance
Computing

Japan

System

Sunway TaihuLight - Sunway MPP, Sunway
SW26010 260C 1.45GHz, Sunway
NRCPC

Tianhe-2 [MilkyWay-2] - TH-IVB-FEP Cluster,

Intel Xeon E5-2692 12C 2.200GHz, TH
Express-2, Intel Xeon Phi 31S1P
NUDT

Titan - Cray XK7 , Opteron 6274 16C 2.200GHz,

Cray Gemini interconnect, NVIDIA K20x
Cray Inc.

Sequoia - BlueGene/Q, Power BQC 16C 1.60
GHz, Custom
IBM

Cori - Cray XC40, Intel Xeon Phi 7250 68C
1.4GHz, Aries interconnect
Cray Inc.

Oakforest-PACS - PRIMERGY CX1640 M1,
Intel Xeen Phi 7250 68C 1.4GHz, Intel Omni-
Path

Fujitsu

Cores

10,649,600

3,120,000

560,640

1,572,864

622,336

556,104

Rmax
(TFlop/s)

93,014.6

33,862.7

17,590.0

17,173.2

14,014.7

13,554.6

Rpeak
(TFlop/s)

125,435.9

54,902.4

27,1125

20,132.7

27,880.7

24,9135

Power
(kW)

15,371

17,808

8,209

7,890

3,939

2,719

Total in 2016 : Pangea SGI ICE X 6.7 PFlops (petascale)
storage = 26 petabytes (= 6 millions of DVDs)

Pangea - SGI ICE X, Xeon Xeon E5-2670/ E5-
2680v3 12C 2.5GHz, Infiniband FDR

Site: T Ex

Manufacturer: HPE/SGI

Cores: 220,800

Linpack Performance (Rmax) 5,283.11 TFlop/s
Theoretical Peak (Rpeak) 6,712.32 TFlop/s

Nmax 4,919,040

Power: 4,150.00 kW (Submitted)
Memory: 54,000 GB

Processor: Xeon E5-2680v3 12C 2.56Hz
Interconnect: Infiniband FOR

Operating System: SUSE Linux Enterprise Server 11
Compiler: N/A

Math Library: Intel MKL

MPI: S6I MPT

< Numerous applications (simulations)
Nowadays, it is easy to rent a low price HPC unit from cloud computing
services such as AMZ AWS, MS Azure, etc.

Machine learning and
Artificial Intelligence are the
killer apps of High
Performance Computing

— Data Science

Today is the age of Petascale and tomorrow is that of
Exascale

kiloFLOPS 103
megaFLOPS 10°
gigaFLOPS 10°
teraFLOPS 1012

petaFLOPS (PFLOPS, petascale) 10
exaFLOPS (EFLOPS, éxascale) 1018

zettaFLOPS 102!
yottaFLOPS 1024
googolFLOPS 10100

... but not only the computing power for supercomputers matters :
memory (bytes), bandwidth of the network, etc.

Future : exaFlops (108 in 2018-2020), zetaFlops (10%!) in 20307

Charificr Architertiiree far Deen | earnine (TP a+-)

10

But why do we need HPC? To be more efficient !

Faster and more precise! (— weather forecast)
Solve complex problems (— simulation, — big data)

Save energy! At same FLOPS power, use slower processors that
consume less energy !

Simplify data processing : some algorithms are intrinsically parallel
video/image : filters foreach pixel/voxel, GPU & GPGPU

Obtain the result as fast as possible including development cost ! (—
Business)

easy-to-implement parallel algorithms rather than optimized sequential
algorithms that are difficult to implement (by engineers). To have a final

solution = implement an algorithm + execute this algorithm.

11

HPC illustrated

Rush Hour Traffic

Planetary Movments

Climato Change

12

Architecture of a computer cluster

local
memory

local
memory

interconnection

network
local
memory

message passing
with MPI

node of the network

local
memory

13

Topology of interconnection networks in a cluster

s (O ke &

L R

Physical/virtual topology is important for the design of parallel algorithms —
Abstraction

How to broadcast data from one node to all other nodes?
14

Evolution of processors

From mono-processor architectures to multi-cores computers with shared
memory

Computer Computer

(CPU) (CPU))
CPU | |CPU

socket socket

Network

one socket

ket socket

Computer Computer s0C
(CPU) (CPU) motherboard motherboard
4 computers interconnected with a network quad processor on a single board quad core processor

But to scale up in High Performance Computing, we need to use computer
clusters : distributed memory !

15

Ideal theoretical framework...

» Job :a process created by executing a program

» Manager : An administrator which assigns resources in the cluster to
jobs (we shall use SLURM)

» Theoretical framework in this course for analyzing a parallel algorithm :

process P runs on its own processor (a CPU mono-core) of a

computer which is a node of the cluster.

> In practice : heterogeneous computer clusters (multi-cores, with GPU).

Multiple processes can be mapped by the administrator to a same
processor (potentially in a same core)

16

HPC : granularity

granularity = proportion of computations (grains = local computations) with
respect to the communications (inter-processes).

= Frequency of communications (or synchronization) between processes.

» fine-grained : many small jobs, data often transferred between processes
after small computations (e.g., GPU).
— well adapted to multi-cores architectures with shared memory

» coarse-grained : data are not exchanged regularly and only after big
computations.
— adapted to distributed memory clusters

Extreme cases = embarrasingly parallel, very little communications.

17

Parallelism and concurrency

Two different notions in parallel computing :

Parallelism and concurrency :

» Parallelism : jobs executed literally in the same time,
Physically, there are multiple computing units

» Concurrency : at least two jobs progressing simultaneously in time. Not
necessarily in the same time.
time-slicing on a same CPU, multi-task on a core
For example, Windows™ with only one core : it seems that multiple
applications executed in the same time but it is just an illusion !

18

Parallel programming models of nodes

» Vector programming model (SIMD, Cray)

» Distributed programming model : clusters
exchanges of explicit messages — MPI

» Programming model with shared memory :
multi-threading (OpenMP)

10

Big Data... 4V

BigData = a buzzword widely advertised, hide may factors, (/large-scale)

The 4 V on data :
» Volume (TB, PB, etc.)

» Variety (heterogeneous)
» Velocity (data processed in real time, captors)

» Value (not simulation but valorization)

20

Fault tolerance : a recurrent problem on clusters

Fault tolerance of computers?, networks ?, disks 7, etc. :
» MPI : zero tolerance but very easy to programming

» MapReduce C++ (or Java Hadoop) = programming paradigm : high
fault tolerance but very limited computing model

We can do MapReduce (progamming model //) with MPI

“Towards efficient mapreduce using MPI,” European Parallel Virtual
Machine/Message Passing Interface Users’ Group Meeting. Springer Berlin
Heidelberg, 2009

21

Some fallacies on distributed systems!

1. The network is reliable

2. Zero latency

3. The bandwidth is infinite

4. The network is sure

5. The network topology does not change
6. There is only one network administrator
7. Transportation cost is zero

8. The network is homogeneous

29

BIARNE STROUSTRUP

THE CREATOR OF C++

Successor of C (~ 1970), C+1 = C++! (1983)

bk

An object-oriented (OO) language C++

>

>

created by Bjarne Stroustrup in 1983

Object-Oriented (OO) with static typing.
— influence Java and other derives of C (= 1970)

Code is compiled quickly (# Python interpreted), without virtual
machines (# Java with JVM)

We need to manage the memory ourself : without Garbage Collector,
GC. Pay attention to errors during execution (system crash, segmentation
fault, core dumped)

Passing by values, pointers or references (# Java : passing by value or by
reference for objects)

File extensions : .cc .cpp .cxx .c++ .h .hh .hpp .hxx .h++

Use g++ (GNU Compiler Collection) of GNU

24

Compilator C++ (GNU)

Standards (ANSI C++, C++11, etc.) and other compilators
https://gcc.gnu.org/

[france "]$ gt++ --version

g++ (GCC) 4.1.2 20080704 (Red Hat 4.1.2-55)

Copyright (C) 2006 Free Software Foundation, Inc.

This is free software; see the source for copying
conditions. There is NO

warranty; not even for MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE.

= exist many versions of g++ (C++98, C++11; etc.)
STL (Standard Template Librarry) by default in C++98

Compilators online : http://cpp.sh/, etc.
Install MinGW to have g++ on Windows

25

https://gcc.gnu.org/
http://cpp.sh/

Plan

1. First program in C++

26

Welcome to C++

/+x First program with

a comment on two lines x/
// for the inputs and outputs (1/0s) :
#include <iostream>

int main()

{

std :: cout << "Welcome to INF442\n";
return 0; // not mandatory

}

We compile with g++ :

console> g++ bienvenue.cpp -0 bienvenue
console>bienvenue
Welcome to INF442

cout = short for c(onsole) out

27

Welcome to C++

#include <iostream>

// to avoid the need for writing std : : multiple times
using namespace std;

int promo=15;

int main()

{

cout << "Welcome to C++'"<<promo<<endl;
/x cout = Standard output stream
we write in the flow cout with <<

*/

278

Plan

2. Inputs and outputs in C4++

20

Welcome to C++ : inputs and outputs

#include <iostream>
using namespace std;

int main()
{int x;
cout << "Enter an integer : ";
cin >> x; // we read the integer to x
cout << "Square of x is : "<<xxx<<endl;

}

And also cerr (console error) which displays immediately important (error)

messages to the console ...

20

Welcome to C++ : inputs and outputs

#include <iostream>

int main(int argc, char xxargv)

{

std ::cout << "Hello everyone " << argv[l] << std::
endl;
return 0;

console> g++ helloEveryone.cpp -o helloEveryone
console> helloEveryone Frank

We obtain on the console :

Hello everyome Frank

21

Read a string of charaters

#include <iostream>
#include <string>

int main(int argc, char xxargv)

{ // declare a variable of type string
std ::string promo;
std ::cout << "Enter the promotion : " << std::endl;
std::cin >> promo;

std :: cout << "Welcome the " << promo << "s" << std::

endl;
return 0;

29

Redirection inputs and outputs

In a file Promo.txt :
X15
Redirect the content of the file Promo.txt to the program thanks to '<’ :

console> helloEveryone < Promo.txt
Welcome the X1b6s

273

Plan

3. Classes and objects

22U

Objects and methods in C++

Be careful, we need to put a ; after the declaration of a class (# Java)

class Boite
{public: // we put public to allow exterior access
double horizontal; // field object : width
double vertical; /x field object : height x/

+

int main()
{ Boite Bl, B2;
double surface = 0.0;
// access to member with "’
Bl.horizontal = 5.0; Bl.vertical = 6.0;

surface = Bl. horizontal x Bl.vertical;
cout << "Area of the box Bl : " << surface <<endl;
return 0;

25

Objects : constructor(s) and destructor ™ in C++
it is possible to have multiple constructors (with different signatures) but
always only one destructor.

class Boite

{public:
double horizontal; // width
double vertical; /x height x/

Boite (double h, double v);
Boite (double s);
// we use the destructor by default Boite()

¥

// The body of the constructor defined outside of the class
Boite :: Boite (double h, double v)
{horizontal=h; vertical=v;}

Boite :: Boite (double s)
{horizontal=vertical=s;}

26

Member functions and static functions

class Boite

{public:
double horizontal; // width
double vertical; /x height x/

Boite (double h, double v);

// member function : use the field
double area(){return horizontalxvertical;}

// static function
static double area(double cl1,double c2){return clx%c2;}

» A member function has access to variables of the class.
» A static function does not have access to variables of the class.

cout << "Area of the box Bl : " << Bl.area()<<endl;

7

Plan

4. Memory : execution stack and heap

28

Stack and heap

» When we call a function in C++ (we call the function main() by default
when we execute a program), the variables of the functions are stored in
the execution stack.

» When a function finishes its execution, the corresponding memory in the
stack is freed.

» Functions can store objects created in the global memory (heap, accessible
by all functions) by using the key word new

» There is no GC (GC = Garbage Collector), we need to free the memory
with the key word delete

20

recursive function

#include <iostream>
using namespace std;

int factorial(int n)

{if (n==0) return 1; else return nxfactorial(n—1);}

int main()

{
cout<<factorial (10); // 3628800

}

Everything is ok for 10! but pay attention to overflow :

limited precision (on 32-bit or 64-bit architectures)

Integers have only a

a0

Recursive function and execution stack

int PlusBeaucoup(int x)

{

int tmp; // a variable for nothing, it will disappear in the optimized code

or warning
return PlusBeaucoup(x+1);

}

int main()

{

PlusBeaucoup (442);
return 0;

}

What happens?
No terminal case for this recursion : It terminates abnormally when the

execution stack becomes full!

a1

Objects and local memory (stack)

Boite agranditBoite(Boite B, double dH, double dV)
{

// The object Boite stored in res is local (since there is no new)
Boite res=Boite(B.horizontal+dH,B. vertical+dV);
// we return the object

return res;}

int main()
{ Boite B1(5,6);

// we get the object result in the object B2
Boite B2=agranditBoite(B1,1,2);

cout<<B2. horizontal <<"x"<<B2. vertical <<endl;
return 0;}

Explain what happens in the code!

a2

Objects and global memory (heap)

» We define a variable pointer object res of type Boitex.
» We access to fields of a variable pointer object by ->

Boitex agranditBoite(Boite B, double dH, double dV)
{

// Here we create the object in the global memory, the heap, with new

Boitex res=new Boite(B.horizontal+dH,B. vertical+dV);

// we return pointer
return res;}

int main()
{ Boite B1(5,6);
Boitex B2=agranditBoite(B1,1,2);

cout<<B2—>horizontal <<"x"<<B2-—>vertical <<endl;
delete B2;
return 0;}

a3

Summary on objects

» a class contains members variables and members functions/procedures
(procedure = function which returns nothing, the type void)

v

for creating an object in the stack, we don't use new

v

for creating an object in the heap (global memory), we use new
Do not forget to delete the object when we don't use it anymore !

v

a member static function never has access to member data of the object

a4

Plan

5. Pointers

a5

Random access memory : the ribbon memory and pointers

int p=2014;

int x ptrp = &p; // declare a pointer on p
cout<<"address of the cell of p :"<<ptrp<<endl;
(xptrp) = p+3; // we modify the content of the cell

cout<<p<<endl; // we get 2017/

Oxffffcc04 = &p &ptrp (adressage)
2014 Oxfftfcc04
X

contenu *ptrp (déréférencement)

&p : get the address of p
«p : dereferencing, we access to the content of p
(the content itself can be a memory address)

46

Pointers in C++ and variable typing

» Declaration of variable pointers :

int * ptr_entier, *ptrl, *ptr2;
char * ptr_caractere;
double * ptr_real;

» Referencing operator (Getting the address) : &
int var=1;
int *var2; // pointer to a variable of type integer
var2=gvarl; // var2 points to varl

» Dereferencing operator : *

/* Take an integer in the cell referenced by var2 */
int var3=(*var2); // we dereference var2

a7

C++ : pointers in action!

#include <iostream>
using namespace std;
int main ()
{
int varl=442;
int xvar2;
var2=&varl; // var2 points to varl
cout<<"value of var2 : '"<<var2<<endl;
int var3=(xvar2); // we dereference
cout<<"value of var3 : '"<<var3<<end!;
return 0; // terminate without problems - :)

}

console> g++ program.cpp -0 mMONprogram.exe
console> monprogram.exe

value of var2 : 0x7a30£960c59c
value of var3 : 442

48

Why do we need to manipulate pointers?

pointer = typed variable which saves the address of another variable.
value of a pointer = memory address

int varl =442; var2 = 2015;

int * Ptrl, * Ptr2;

Ptrl = &varl; Ptr2 = &var2;

Facilitate the implementation of dynamic data structures
— linked list, trees, graphs, etc.

In C++4/C, pointers allow :
» allocate memory for a variable and return a pointer to this memory area

» access to the value of the variable by dereferencing : *Ptr1

» free manually the memory

* : dereferencing operator = “ value pointed by "

49

References and alias

int vall=442;
int val2=2017;

// alias
int & refVall=vall;

cout<< refVall <<endl; //442
refVall=val2;

// below, the alias phenomenon
cout<< vall <<endl; //2017

50

#include <iostream>
using namespace std;

int main () {

int vall = 2015, val2 = 442;

int x pl, % p2;

pl = &vall; // pl = address of vall

p2 = &val2; // p2 = address of val2

xpl = 2016; // value pointed by p1 = 2016

xp2 = xpl; // value pointed by p2 = value pointed by pl1
pl = p2; // pl = p2 (value du pointer copiée)

xpl = 441; // value pointed by p1 = 441

cout << "vall=" << vall << endl; // display 2016
cout << "val2=" << val2 << endl; // display 441
return 0;

}

[llustrations on next slides!

51

&vall
int vall = 2015, val2 = 442;
int * pl, * p2; 2016
pl = &vall; // pl = adresse de vall
p2 = &val2; // p2 = adresse de val2
*pl = 2016;
*p2 = *pl; p1

5D

pl = p2;

&valil

2016

pl

53

*pl = 441;

&valil

2016

54

Pointers to pointers

Reminder : pointer = typed variable whose value is the reference memory of
another variable.

double a;
doublex b;
doublexx ¢;
doublexxx d;

a=3.14159265;
b=&a ;
c=&b;
d=&e¢ ;

cout<<b<<’'\n'<<c<<endl<<d<<endl;

[llustration on the next slide!

14

Pointers of pointers

double a;
double* b;
double** c;
double**x d;

a=3.14;
b=&a;
c=&b;
d=&c;

a b c d
3.14 0x22aac0 x22aab 0x22aab0)
0x22aac0 0x22aab8 0x22aab0 &d

56

Null pointer NULL

NULL=0

» useful in the recursive construction of data structures (lists, trees, graphs,
sparse matrices, etc.)

» does not point to a valid reference or any memory address :
double * ptr=NULL;
. else return new Noeud("feuille", NULL, NULL);

» pay attention to segmentation faults :

T % ptr; ptr=mafunctionSuperd442();
cout<< (xT)<<endl;
// can explode if T=NULL or if T points to a non-declared memory cell!

R7

Pointers and references

» A reference is always definite, of a given type, and never change.
No arithmetic for references or change of type.

» in C++, passing by value or by reference : If the value is a pointer, the
function can change the content of the pointed memory cells, pointer
arguments stay unchanged.

» Passing by reference does not copy the object to the stack of function
calls :

int functionpassParRef(MaClasse& classeobject)

..}

L¥:

Plan

6. Function calls and argument passing

1{e)

Modes of argument passing : value or reference

The

arguments of a function can be passed in three different ways :

Passing by value : we evaluate the expression of the argument and copy
its value to the stack.

Passing by reference : we avoid copying to the stack the argument by
giving only its reference. We manipulate the argument thanks to its
reference, and so if the function change its value, these changes are kept
after the function terminates.

Passing by "pointer” (= by value of a memory address). It is a pass by
value

60

Pass by value

int fois(double a, double b)
{return axb;}

int main()
{// we evaluate the arguments and put the result to the stack

cout<<fois(5+2—-1,4/2.0+3)<<endl; //30

}

61

Pass by value

int plusplus2(double a, double b)
{a=a+1; b=b+1;
return a+b;}

int main()
{int a=2, b=3;
cout<<plusplus2(a,b)<<endl; //7
/+* a and b do not change their values since
plusplus2 is
a pass by value x/

62

Pass by value of objects

// Passing by value :does not work
// B is copied to the stack

void DoubleDimension(Boite B)

{

B.horizontal*x=2; B.vertical x=2;

}

int main()
{ Boite B1(5,6);

cout<<Bl. horizontal <<"x"<<B1l. vertical <<endl;

DoubleDimension (B1);
// pass by value, B1 does not change!
// we copied the object BI to the stack

cout<<Bl. horizontal <<"x"<<Bl. vertical <<endl;

return 0:1

63

Passing by reference

// we pass the argument by reference
void decrement(int& a)

{a——:}
int main()
{int a=443;

decrement(a);
cout<<a<<endl; // 442
return 0;

}

64

Passing by reference of objects

// pass by reference
// the reference of B is put to the stack
// We don’t copy B to the stack

void DoubleDimension(Boite& B)

{

B.horizontal*=2; B.vertical x=2;

¥

65

Passing by “pointer” = by value of the memory address

void decrement(intx* a)

{(xa)—=}

// we change the content of a but its address does not change

int main()
{int a=443;
decrement(&a);
cout<<a<<endl;
return 0;

¥

66

Passing by “pointer” of objects

// passing by pointer
// We don't copy B to the stack

void DoubleDimension(Boitex B)

{

B—>horizontal x=2; B—>vertical x=2;

}

67

Passing by “pointer” of objects

// passing by pointer
// We don’t copy B to the stack

void DoubleDimension(Boitex B)

{

B—>horizontal x=2; B—>vertical x=2;

¥

// we change the content of B
// but its address does not change

68

Passing by “pointer” of objects

// pass by pointer = pass by value of an address
// Does not work
// When we finish the procedure, the pointer on B does not change

void DoubleDimension(Boitex B)

{
}

We lost the memory space on the heap!

B=new Boite(2xB—>horizontal ,2xB—>vertical);

690

// argument passing with an unary operator
int plus442(int x)
{return x+442;}

void plus442val(int x)
{x=plus442(x);}

void plus442ref(int& x)
{x=plus442(x);}

void plus442ptr(intx x)
{(xx)=plus442(xx);}

int main()
{int x=1,;
plus442val(x
plus442ref(x
plus442ptr(&

h

; cout<<x<<endl; //I
; cout<<x<<endl; //443
); cout<<x<<endl; //885

)
)

70

Passing by values and passing by references

void swap (int& x, int& y) // by reference
{ int temp = x; x = y; y = temp;}

void swapPtr (intx Ptrl, intx Ptr2) // Attention!
{int * Ptr; Ptr=Ptrl; Ptrl=Ptr2; Ptr2=Ptr;}

// We swap the content of the variables
void swapGoodPtr (intx x, intx y) //ok!
{ int temp = xx; #*x = xy; xy = temp;}

int main ()

{

int a=2,b=23;

swap(a, b); cout<<a<<" '"<<b<<endl;// OK
a=2; b=3; intx Ptra =&a,x Ptrb =&b;
swapPtr(Ptra, Ptrb);

cout<<xPtra<<" "<<xPtrb<<endl; // non!
swapGoodPtr(Ptra, Ptrb);

cout<<*sPtra<<" "<<xPtrb<<endl; // oui!

}

71

Plan

7. Arrays in C++

79

Arrays in C4++ : static allocation
Indices begin at 0 as in Java, but we can not do tab.length!

We need to give the length of the array in argument of functions

int nombrePremiers [4] = { 2, 3, 5, 7 };
int baz [442] = { }; // values initialised to zero

// bidimensionnal array

int matrice [3][5]; // choose a convention : 3 lines 5 columns.

void procedure (int table[]) {}

Later, we will almost always use vector of STL which manages arrays in a
dynamic way...

73

// Arrays and pointers : arithmetic of pointers

int main ()

{

int tab[5];

int x p;

p = tab; xp = 10;
p++; *p = 20;

p = &tab[2]; xp = 30;
// arithmetic of pointers!

p = tab + 3; xp = 40;
// arithmetic of dereferenced pointers!
p = tab; x(p+4) = 50;

for (int n=0; n<5; n++)
cout << tab[n] << " ";
return 0;} // 1020 30 40 50

Arrays : Dynamic allocation in C4++

We have to manage memory space ourself in C++ (not as in Java!), and we
must free the memory when we no longer use it .

int taille=2015;
int xtab;
tab=new int[taille];

// ... use this array then FREE it!

delete [] tab;

75

The type string : program MiroirTexte.cpp

#include <iostream>
using namespace std;

string renverse(string txt)

{

string result="",;

int n=txt.size();

for(int i=0;i<n;i++)

{result+=txt [n—1—i]; // concatenation of strings

}

return result; }

int main()

{

string msg="Ambulance";
cout<<msg<<end];

cout<<renverse (msg)<<endl; // ecnalubmA
!

76

Overload of operators in C++ (here for string)

== (double equal) is overloaded for the type string

bool estCeUnPalindrome(string msg)
{return (msg==renverse(msg));}

int main()

{

string msg="mon nom";
cout<<estCeUnPalindrome (msg)<<endl;
msg="Cours";
cout<<estCeUnPalindrome (msg)<<endl;

}

77

Arrays of characters : the length must be given!

char % DNAdual(char xsequence, int n)
{char % result=new char[n];

int i;

for(i=0;i<n;i++4)

{

if (sequence[i]J=="A") result[i]="T"’

if (sequence[i]J=="T") result[i]="A"

if (sequence[i]=="C") result[i]="G’

if (sequence[i]=="G") result[i]="C"

}

return result;}

int main()

{ // ATCGATTGAGCTCTAGCG

char sequence[]={'A",'T",’C",’G",’A",'T",'T",'G" A" ’
G ,'Cc T, e, T AT G, TCT G)

char x brinComplementaire=DNAdual(sequence ,n);

return 0;}

78

Arrays of characters : Length must be given!

void printLine(char %carray, int n)

{int i; for(i=0;i<n;i++) cout<<carray[i];

cout<<endl;}

char * ARNTranscription(char xsequence, int n)

{char % result=new char[n];

int i;

for(i=0;i<n;i++)

{if (sequence[i]=="T") result[i]="U"; else result[i]=
sequence[i]; }

return result; }

int main()

{ // ATCGATTGAGCTCTAGCG

char sequence[]={'A",'T",'C",'G",’A" ,'T",'T",'G",'A’
G ,'c T, e, T AT G, T TG)

int n=18;

char % brinARN=brinARN=ARNTranscription(sequence ,n);

printLine (brinARN ,n);

return 0:1}

70

Pointers and arrays : some remarks

The value of an array variable tab is the memory address of its first element

int tab[442];
int x ptr;

The pointer ptr is a variable which stores a memory address of an int (4
bytes = 32 bits, on 32 bits architecture). Therefore we can do :

ptr=tab;

A static array is considered as a constant pointer .
it is therefore not allowed to do :

tab=ptr; // not autorized

20

Plan

8. Multi-dimensional arrays in C++

81

Allocation of multi-dimensional arrays

int main(int argc, char xargv][])

{

double %% matriceTriangulaire;

int i,j, dimension=20;

// we have to create a 1D array of pointers of type double *
matriceTriangulaire=new doublex[dimension];

// now we create lines
for(i=0;i<dimension; i++)

matriceTriangulaire[i]=new double[dimension];

// matrice identite
for(i=0;i<dimension; i++)
for(j=0;j<=i;j++)
if (i=j) matriceTriangulaire[i][j]=
else matriceTriangulaire[i][]j]

return O:

89

T pointeur sur un double* (type double**) int d=2015;
\‘ double **T=new do
—
for(i=0;i<d;i++)

0] ‘ T[] ‘ ‘ T ‘ T[i]=new double

T[i] pointeur sur un double (type double¥*)

%\ o] [e | o

a3

Display of multi-dimensional arrays
We need to choose between the conventions line-column or column-line for the
indices of the array.

#include <iostream>
using namespace std;

int main(int argc, char xargv]([])

{

double xx matriceTriangulaire;
int i,j, dimension=20;

for(i=0;i<dimension;i++){

for (j=0;j<=i;j++)
{cout<<matriceTriangulaire[i][j]<<" ";}
cout<<endl;

}

4

The dangers of pointers : dangling pointer

A pointer which points to nothing = dangling pointer

int main ()
{ int % arrayPtrl;
int x arrayPtr2 = new int[442];

arrayPtrl = arrayPtr2;
delete [] arrayPtr2;

cout << arrayPtrl[441];

return 0;}

Many unexpected possible side effects : depends on the utilization history of

the heap (heap)

85

The dangers of pointers : non-accessible zones

We may reserve memory zones which are no longer accessible :

int * Ptrl= 2015;
int x Ptr2 = 442;
Ptrl1 = Ptr2;

Now imagine :

int x Ptrl= new int[2015];
int x Ptr2 = 442;
Ptrl1 = Ptr2;

out of memory!

There exist some dynamic visualization tools for tracking the memory during
the execution of programs. http://valgrind.org/

86

http://valgrind.org/

Plan of the course Al en C++

First program in C++

Inputs and outputs in C++

Classes and objects

memory : execution stacks and heaps
Pointers

Function call and argument passing
Tables in C++

Multi-dimensional tables in C++

© N o kR whd =

7

Summary

» HPC helps to be more efficient :
faster, finer-grained simulations, larger amount of data, etc.
We can simulate a parallel computer on a sequential machine but it is
much more slower then!

» C++ is a compiling object-oriented language, built on C

» Unix is a multi-task operational system, written in C

a8

Summary of key notions in C++

v

understand local memory (stack) versus global memory (heap)

v

passing by value, passing by reference of arguments (or passing by
pointer)

v

dynamic allocation (new) and manual management of memory (delete)

v

classes and objects

80

Summary on pointers and references

& : reference operator = “ address of "
* : dereference operator = “ value pointed by ”

» pointers : values = memory addresses. Save a reference on another
variable.
» pointers and arrays (— constant pointers), pointers of pointers, ...
» pointers void point on any type but can not be dereferenced (type casting)
» pointers NULL
» pointers and memory of heap : dangling pointers (unallocated memory —
segmentation fault), no longer accessible (garbage)

» references : useful for passing of arguments to functions. No arithmetic for
references, casting. A reference never changes and can not be NULL

00

Hands-on session 1 : Fundamentals of C++

Nothing can replace experience when programming!

>

>

>

Multiple choice questions (5-15 minutes)
Some Unix commands

Hello world !

Debug a palindrome program

Swap by references

Swap by pointers

Transposition of matrices

Multiplication of matrices

01

Practice for first hands-on session

» create a diagonal matrix
» print the matrix in output console

> create symmetric matrices

[+}.

#include <iostream>

using namespace std;

// we don't the length of the diagonal

// we need to pass its length as an argument

double %% diagMat(int dim, doublex diag)
vt

int 1,J;

double *xres;

res=new doublex [dim];
for(i=0;i<dim; i++)
{res[i]=new double[dim];}

for(i=0;i<dim; i++)
{for(j=0;j<dim; j++)
{if (i=j) res[i][i]=diag[i];
else res[i][j]=0;}
}
return res;}

03

Procedure = function which does not return a result : (void)

void printMat(double *xM, int dim)

{int i,j;

for(i=0;i<dim; i++)

{for(j=0;j<dim; j++)
{cout<M[i][j]l<<"\t";}

cout<<endl;

}

}

int main()

{
double diag[3]={1,2,3};
doublexx Mdiag;

Mdiag=diagMat (3,diag); printMat(Mdiag,3);
return O;

A more geek version, not recommended, but we may find it in some codes...
+ issue of C syntax

double *x diagMat(int dim, doublex diag)

{
int i,j;
double xxres;

// par default, les valeurs sont egales a zero
res=new doublex [dim];
for(i=0;i<dim; i++)

res[i]=new double[dim];

for (i=0;i<dim;i++)
for(j=0;j<dim; j++)
res[i][j]=((i=j) ? diag[i] : 0);

return res;

}

#include <iostream>
// pour drand48(), inclure
#include <stdlib.h>
using namespace std;

double #x symMat(int dim)
{int i,j;

double *xres;

res=new doublex [dim];

for(i=0;i<dim;i++) res[i]=new double[dim];

for(i=0;i<dim; i++)
for(j=0;j<=i;j++)

{res[i][j]=drand48();res[j][i]=res[i][]j];}

return res;

}

06

Not recommended but we can rewrite this code as below :

double *x symMat(int dim)

{int i,j;

double xxres;

res=new doublex [dim];

for(i=0;i<dim;i++) res[i]=new double[dim];

for(i=0;i<dim; i++)
for(j=0;j<=i; j++)
{res[i][j]=res[j][i]=drand48();
{ / avant : res[il[j]=drand48() ;res[j][i]=res[i][]]

return res;

}

07

A short introduction to Unix

UNIX

Unix is an operating system (OS) developed in the 1970s at Bell Labs of
AT&T by Ken Thompson and Dennis Ritchie.

THE

UNIX

PROGRAMMING
ENVIRONMENT

Brian W.Kemighan
Rob Pike

090

Some elementary commands of Unix

» Who am |7 id

[france ~]$ id
uid=11234(frank .nielsen) gid=11000(profs) groups=11000(profs)

» List, rename and delete files : 1s, mv (move) et rm (remove, option -i by
default)
» Create a file or change its timestamps : touch

» Visualize and concatenate files : more et cat

more files

Elementary commands of Unix

Inputs/Outputs and pipe |

[france ~]1$ cat fichierl.cpp fichier2.cpp lwc
26 68 591

Access the manual :
[france ~]$ man wc

Redirections :

programme <input >output 2>error.log

Unix command : jobs)

» List all running processes (their numbers, pid) : ps
(with options like ps -a)

» Suspend a process with Control-Z (Ctrl)
sleep 10000
Ctrl-Z

» Place a suspended job in process to the background :
bg

» Kill processes or send signals to pids : kill
[france ~]1$ sleep 5000 &
[1] 13728

[france ~]$ kill %1
[1]1+ Terminated sleep 5000

Command shell (Unix)

» Open a window shell (in computer lab, shell = bash)

» Read the initial configuration file (= your file .bashrc) in your folder
“home” (7).

more .bashrc
Modify it by using a text editor (kate, nedit, vi, emacs, ...)
Then read the configuration again at any moment in a session with :

source .bashrc

An example of .bashrc

For curiosity :

if [—f Jetc/bashrc]; then
/etc/bashrc

fi

Prompt

PSI="[\h \WJ\\$ "

alias rm="rm —i'

alias cp='cp —i'

alias mv="mv —i'

alias mm="/usr/local/openmpi —1.8.3/bin/mpic++ —|/usr/local /boost —1.56.0/include/
—L/usr/local /boost —1.56.0/lib/ —lboost mpi —lboost serialization

export PATH=/usr/lib /openmpi/l.4—gcc/bin:${PATH}
export PATH=/usr/local/boost —1.39.0/include /boost—1 39:${PATH}

LS_COLORS="di=0;35" ; export LS COLORS
export LD LIBRARY_ PATH=SLD LIBRARY_ PATH:/usr/local/openmpi—1.8.3/1ib /:/usr/local

/boost —1.56.0/ 1ib7/

Acknowledgments

» The initial translation of these slides from french to english was performed
by Van-Huy Vo of Ecole Polytechnique. Many thanks to him!

» When preparing the release of these english slides, | cleaned this
translation a bit.

» Beware that this is not final release as some more translation work need to
be done (in particular, in figures and codes)

On Internet
https://franknielsen.github.io/HPC4DS/

Frank Nielsen

Introduction
to HPC with

MPI for Data
Science

https://franknielsen.github.io/HPC4DS/

