
7
Partition-based clustering with k-means

A concise summary is provided at the end of this chapter, in §7.11.

7.1 Exploratory data analysis and clustering

Nowadays, huge size data-sets are commonly publicly available, and it becomes

increasingly important to efficiently process them to discover worthwhile

structures (or “patterns”) in those seas of data. Exploratory data analysis is

concerned with this challenge of finding such structural information without

any prior knowledge: In this case, those techniques that consist in learning

from data without prior knowledge are called generically unsupervised machine

learning.

Let X = {x1, ..., xn} denote a data-set like a collection of images (often

static, that is given once for all when we begin with the analysis). We seek

for compact subsets of data, called clusters, that represent categories of data

(say, the cluster of the car images or the cluster of the cat images, etc.). Each

datum xi ∈ X (with X denoting the space of data, usually X ⊂ R
d) is described

as an attribute vector xi = (x1
i , ..., x

d
i), called a feature vector. We adopt the

following notation xj
i (meaning x

(j)
i) to describe the j-th coordinate of vector

xi. Vector attributes can either be numerical quantities or categorical values

(that is qualitative attributes) like the fixed set of words of a dictionary, or

ordered categorical data (like the ordered ranking A < B < C < D < E), or a

186 7. Partition-based clustering with k-means

mix of those different data types.

Exploratory analysis differs from supervised classification that consists in

a first stage to learn a classifier function C(·) from labeled data of a training

data set Z = {(x1, y1), ..., (xn, yn)}, with the xi’s the attributes and the yi’s the

class labels, in order in a second stage to classify new unlabeled observations

xj belonging to a testing set: ŷj = C(xj). The hat notation in ŷj indicates that

one has estimated the class, a so-called inference task performed from a training

data set.

Clustering is a set of techniques that consists in detecting subsets of data

that define groups or clusters. Those groups should ideally represent semantic

categories of data: For example, the flower groups organiwed by species from a

database of flower images. One such famous public data-set is available from

the UCI repository1 as filename Iris2: It contains n = 150 numerical data in

dimension 4 (with attributes describing the length and the width of both the

sepals and petals, in centimeters), classified in k = 3 botanical groups: Setosa

iris, Virginica iris, and Versicolor iris.

To summarize, classification enables to label new observations while

clustering allows one to discover those classes as clusters.

Figure 7.1 Exploratory analysis consists in finding intrinsic structures in data

sets like groups of data called cluster. Clustering is a set of techniques that seek

to find homogeneous clusters in data-sets. In this 2D toy example, the Human

eye perceives three well-formed clusters for the digits: ’4’, ’4’, ’2’. In practice,

data-sets are living in high dimensions, and thus cannot be visually inspected:

Therefore we require clustering algorithms to automatically find those groups.

1 Available online at https://archive.ics.uci.edu/ml/datasets.html
2 http://en.wikipedia.org/wiki/Iris_flower_data_set

7.1 Exploratory data analysis and clustering 187

7.1.1 Hard clustering: Partitioning data sets

Partition-based clustering consists in dividing a data set X = {x1, ..., xn} into

k homogeneous groups G1 ⊂ X, ..., Gk ⊂ X (the non-overlapping clusters Gi)

such that we have:

X = ∪k
i=1Gi, ∀ i �= j, Gi ∩Gj = ∅,

X := 	k
i=1Gi

Notation a := b indicates that the equality sign should be understood by

definition (that is, it is not an equality resulting from some mathematical

calculation). Thus a data element (datum) is allocated to a unique group Gl(xi):

Partition-based clustering is a hard clustering technique, and differentiates itself

from other soft clustering techniques that gives a positive membership weight

li,j > 0 for all the xi’s and the groups Gl(xi)’s with
∑k

j=1 li,j = 1 (normalization

constraint): li,j = 1 if and only if (iff.) j = l(xi). We denote by L = [li,j] the

membership matrix of size n× k.

7.1.2 Cost functions and model-based clustering

Finding a good partitioning of the data X = 	k
i=1Gi requires to be able to

evaluate the clustering fitness of partitions. However, we often proceed the

other way around! From a given cost function, we seek an efficient algorithm

that partitions X by minimizing this prescribed cost function. A generic cost

function ek(·; ·) (also synonymously called energy function, loss function or

objective function) is written as the sum of the costs of each group as follows:

ek(X;G1, ..., Gk) =

k∑
i=1

e1(Gi),

with e1(G) the cost function for a single group.

We can also associate for each group Gi a model ci that defines the “center”

of that cluster. The collection of centers, the ci’s, are called the prototypes, and

those prototypes allow one to define a distance between any data x ∈ X and

any cluster G (with corresponding prototype c) as follows:

DM (x,G) = D(x, c).

Function DM (x,G) denotes the distance between an element x and a

cluster using the prototype of that cluster. Function D(p, q) is a base distance

to properly define according to nature of the data set. That is, we have

DM (x,G) = D(x, c) where c is the prototype of G.

188 7. Partition-based clustering with k-means

Given the set of k prototypes C = {c1, ..., ck}, one can define the overall

cost of a partition-based clustering by:

ek(X;C) =
n∑

i=1

min
j∈{1,...,k}

D(xi, cj),

and the cost of a single cluster is defined by e1(G, c) =
∑

x∈G D(x, c). Model-

based clustering with a single center associated to each cluster induces a

partition of the data set X: G(C) = 	k
j=1Gj , with Gj = {xi ∈ X : D(xi, cj) ≤

D(xi, cl), ∀ l ∈ {1, ..., k}}.
There exists many clustering cost/loss functions that gives rise to many

different kinds of partitions. Next, we shall introduce the most celebrated such a

function called k-means, and explain why the minimization of this loss function

provides good clustering partitions in practice.

7.2 The k-means objective function

The k-means cost function asks to minimize the sum of squared Euclidean

distances of data points to their closest prototype centers:

ek(X;C) =

n∑
i=1

min
j∈{1,...,k}

‖xi − cj‖2.

Although that the squared Euclidean distance D(x, c) = ‖x − c‖2 is a

symmetric dissimilarity measure equals to zero if and only if x = c, it is not

a metric because it fails to satisfy the triangular inequalities of the ordinary

Euclidean distance: ‖x−c‖2 =
√∑d

j=1(x
i − cj)2. In fact, there is a good reason

to choose the squared Euclidean distance instead of the Euclidean distance:

Indeed, the cost of a single cluster e1(G) = e1(G, c) is minimized when we

choose for the cluster prototype its center of mass c, called the centroid:

c(G) := argminc
∑
x∈G

‖x− c‖2 =
1

|G|
∑
x∈G

x,

where |G| denotes the cardinality of G, that is the number of elements contained

in group G. We use the following notation argminxf(x) to denote the argument

that yields the minimum in case this minimum value is unique.3

3 Otherwise, we can choose the “smallest” x that yields the minimum value according
to some lexicographic order on X.

7.2 The k-means objective function 189

Thus the minimal cost is e1(G, c) =
∑

x∈G ‖x − c(G)‖2 := v(G), the

normalized variance of cluster G. Indeed, the normalized variance of X is

defined in statistics as:

v(X) =
1

n

n∑
i=1

‖xi − x̄‖2,

with x̄ = 1
n

∑n
i=1 xi the center of mass. Technically speaking, we often meet in

the literature the unbiased variance formula vunbiased(X) = 1
n−1

∑n
i=1 ‖xi−x̄‖2,

but for fixed n the minimizer of the biased/unbiased variance does not change.

We can rewrite the variance of a d-dimensional point cloud X as:

v(X) =

(
1

n

n∑
i=1

x2
i

)
− x̄�x̄

This formula is mathematically the same as the variance for a random

variable X:

V[X] = E[(X − μ(X))2] = E[X2]− (E[X])2

where μ(X) = E[X] denotes the expectation of the random variable X.

We can define a positive weight attribute wi = w(xi) > 0 for each element

xi of X such that
∑n

i=1 wi = 1 (data weights normalized).

The following theorem characterizes the prototype c1 as the center for a

single cluster (case k = 1 with X = G1):

Theorem 3

Let X = {(w1, x1), ..., (wn, xn)} ⊂ R
d be a weighted data-set with wi > 0

and
∑n

i=1 wi = 1. The center c that minimizes the weighted variance v(X) =∑n
i=1 wi‖xi − c‖2 is the unique barycenter: c = x̄ =

∑n
i=1 wixi.

Proof

Let 〈x, y〉 denote the scalar product: 〈x, y〉 = x�y =
∑d

j=1 x
jyj = 〈y, x〉. The

scalar product is a symmetric bi-linear form: 〈λx+ b, y〉 = λ〈x, y〉 + 〈b, y〉 for
λ ∈ R. Now, the squared Euclidean distanceD(x, y) = ‖x−y‖2 can be rewritten

using scalar producs as D(x, y) = 〈x− y, x− y〉 = 〈x, x〉 − 2〈x, y〉+ 〈y, y〉.

190 7. Partition-based clustering with k-means

We seek to minimize minc∈Rd

∑n
i=1 wi〈xi − c, xi − c〉. We can mathemati-

cally rewrite this optimization problem as:

min
c∈Rd

n∑
i=1

wi〈xi − c, xi − c〉

min
c∈Rd

n∑
i=1

wi(〈xi, xi〉 − 2〈xi, c〉+ 〈c, c〉)

min
c∈Rd

(
n∑

i=1

wi〈xi, xi〉
)
− 2

〈
n∑

i=1

wixi, c

〉
+ 〈c, c〉

We can remove the term
∑n

i=1 wi〈xi, xi〉 from the minimization since it is

independent of c. Thus we seek to minimize equivalently:

min
c∈Rd

E(c) := −2
〈

n∑
i=1

wixi, c

〉
+ 〈c, c〉.

A convex function f(x) satisfies f(αx + (1 − α)y) ≤ αf(x) + (1 − α)f(y)

for any α ∈ [0, 1]. It is a strictly convex function iff. f(αx + (1 − α)y) <

αf(x) + (1− α)f(y) for any α ∈ (0, 1). Figure 7.2 plots the graph of a strictly

convex function. Note that the epigraph defined as the geometric object F =

{(x, f(x)) : x ∈ R} is a geometric convex object. A geometric convex object

satisfies the property that any line segment joining two points of the object

shall fully lie inside the object.

x y

(x, f(x))

(y, f(y))

αx+ (1− α)y

f(αx+ (1− α)y)

αf(x) + (1− α)f(y)

z = f(x)

f(x)

f(y)

x∗

f(x∗)

Figure 7.2 Plot of a strictly convex function satisfying f(αx + (1 − α)y) <

αf(x) + (1− α)f(y) for any α ∈ (0, 1).

For univariate convex functions, there exists at most one global minimum

x∗ (for example, exp(−x) is strictly convex without a minimum), and it can

7.2 The k-means objective function 191

be found by setting the derivative to zero: f ′(x∗) = 0. For a multi-variate

real-valued function, we denote by ∇xF (x) its gradient (the vector of partial

derivatives), and by ∇2
xF (x) the Hessian matrix (of second-order derivatives).

A smooth function F is strictly convex if and only if ∇2F � 0 where M �
0 denotes that the matrix M is positive-definite: ∀x �= 0, x�Mx > 0. A

strictly convex function admits at most a global unique minimum x∗ such that

∇F (x∗) = 0.

We get the following d partial derivatives to set to zero:

d

dcj
E(c) = −2

n∑
i=1

wix
j
i + 2cj , ∀j ∈ {1, ..., d},

Consider the d2 second derivatives (for proving the convexity of the

objective function) as:

d2

dcjcl
E(c) = 2, for l = j, ∀j ∈ {1, ..., d}.

The cost function E(c) is strictly convex and admits a unique minimum.

This minimum is obtained by zeroing all partial derivatives:

d

dcj
E(c) = 0⇔ cj =

n∑
i=1

wix
j
i .

Thus we have shown that the minimizers of the weighted sum of squared

Euclidean distance of the center to the points is the unique barycenter:

c = x̄ =
n∑

i=1

wixi.

The centroid is also called isobarycenter when wi =
1
n .

If instead of choosing the squared Euclidean distance, we had chosen

the ordinary Euclidean distance, one obtains the so-called Fermat-Weber

point that generalizes the notion of median. It is thus also called the

geometric median.4 Although the Fermat-Weber point is unique and often

used in operations research for facility location problems, it does not admit

a closed-form solution, but can be arbitrarily finely approximated. The k-

median clustering is the clustering obtained by minimizing the cost function

minC
∑n

i=1 minj∈{1,...,k} ‖xi−cj‖ (observe that the squared Euclidean distance

of k-means has been replaced by the regular Euclidean distance). Note that the

obtained partitions from k-means and k-medians can be very different from each

other. Indeed, the centroid location can be different to the median for a single

4 http://en.wikipedia.org/wiki/Geometric_median

192 7. Partition-based clustering with k-means

cluster. Moreover, centroids can be easily corrupted by adding a single outlier

point. We say that the breakdown point of the centroid is 0: A single outlier

p0 diverging to infinity will impact the centroid to be diverging to infinity too.

But the median is provably more robust since it requires �n2 � outliers (that is,
about 50% of outliers) to steer the median point to ∞. Therefore k-median

clustering is often preferred when there are many outliers in data-sets.

Let us remark that finding the center of a single cluster is a particular case

of clustering with k = 1 cluster. With the squared Euclidean distance cost, we

find that the center is the mean of the attributes, hence its naming: k-means.

Figure 7.3 displays the clustering result on a given data-set. This figure has

been produced using the following code in the R language5:

WWW source code: Example-kMeans.R

fi l ename : Example−kMeans .R

k−means c l u s t e r i n g us ing the R language

N <− 100000

x <− matrix (0 , N, 2)

x [seq (1 ,N,by=4) ,] <− rnorm(N/2)

x [seq (2 ,N,by=4) ,] <− rnorm(N/2 , 3 , 1)

x [seq (3 ,N,by=4) ,] <− rnorm(N/2 , −3, 1)

x [seq (4 ,N,by=4) , 1] <− rnorm(N/4 , 2 , 1)

x [seq (4 ,N,by=4) , 2] <− rnorm(N/4 , −2.5 , 1)

start . kmeans <− proc . time () [3]

ans . kmeans <− kmeans (x , 4 , n s t a r t =3, i t e r .max=10,

a lgor i thm=”Lloyd”)

ans . kmeans$ c en t e r s

end . kmeans <− proc . time () [3]

end . kmeans − start . kmeans

the se <− sample (1 :nrow(x) , 1000)

plot (x [these , 1] , x [these , 2] , pch=”+” , xlab=”x” , ylab=”y”)

t i t l e (main=”Clu s t e r i ng ” , sub=” (g l obu l a r shapes o f

c l u s t e r s) ” , x lab=”x” , ylab=”y”)

points (ans . kmeans$ cente r s , pch=19, cex=2, col=1:4)

5 Freely available online at https://www.r-project.org/

7.2 The k-means objective function 193

Figure 7.3 The k-means cost function tend to find globular-shaped clusters

that minimize the weighted sum of the cluster variances. k-Means clustering

is a model-based clustering where each cluster is associated to a prototype:

its center of mass, or centroid. Here, we have choosen k = 4 groups for the

k-means: Cluster prototypes, centroids, are illustrated with large disks.

7.2.1 Rewriting the k-means cost function for a dual
interpretation of clustering: group intra-cluster or
separate inter-cluster data

The k-means cost function seeks compact globular clusters of small variances.

Indeed, the cost function can be reinterpreted as the minimization of the

weighted sum of cluster variances as follows:

min
C={c1,...,ck}

n∑
i=1

min
j∈{1,...,k}

wi‖xi − cj‖2,

min
C={c1,...,ck}

k∑
j=1

∑
x∈Gj

w(x)‖x− cj‖2

min
C={c1,...,ck}

k∑
j=1

Wjv(Gj),

where Wj :=
∑

x∈Gj
w(x) denotes the cumulative weight of the elements in

cluster Gj (see exercise 7.12).

We can also show that clustering data into homogeneous groups corre-

spond equivalently to separate data of X into groups: Indeed, let A :=

194 7. Partition-based clustering with k-means

∑n
i=1

∑n
j=i+1 ‖xi− xj‖2 denote the constant that is the sum of the inter-point

squared Euclidean distances (fixed for a given data-set, and independent of k).

For a given partition, we can decompose A into two terms: the sum of the

intra-distances inside a same cluster, and the sum of the inter-distance among

two distinct clusters:

A =

l∑
i=1

⎛
⎝ ∑

xi,xj∈Gl

‖xi − xj‖2 +
∑

xi∈Gl,xj �∈Gl

‖xi − xj‖2
⎞
⎠ .

Thus to minimize the sum of the intra-cluster squared Euclidean distances∑l
i=1

∑
xi,xj∈Gl

‖xi−xj‖2 is equivalent to maximize the sum of the inter-cluster

squared Euclidean distances since A is a constant (for a given X):

min
C

l∑
i=1

∑
xi,xj∈Gl

‖xi − xj‖2

= min
C

A−
l∑

i=1

∑
xi∈Gl,xj �∈Gl

‖xi − xj‖2

≡ max
C

l∑
i=1

∑
xi∈Gl,xj �∈Gl

‖xi − xj‖2

Therefore, we have a dual description to define a good clustering:

– cluster data into homogeneous groups in order to minimize the weighted sum

of cluster variances, or

– separate data in order to maximize the inter-cluster squared Euclidean

distances.

7.2.2 Complexity and tractability of the k-means
optimization problem

Finding the minimum of a k-means cost function is a NP-hard problem as soon

as the dimension d > 1 and the number of clusters k > 1. When k = 1, we have

shown that we can compute the optimal solution (the centroid) in linear time

(computing the mean of the group). When d = 1, we can compute an optimal

k-means solution using dynamic programming: Using O(nk) memory, we can

solve the k-means for n scalar values in time O(n2k) (see the exercises at the

end of this chapter for further details).

7.3 Lloyd’s batched k-means local heuristic 195

Theorem 4 (k-means complexity)

Finding a partition that minimizes the k-means cost function is NP-hard when

k > 1 and d > 1. When d = 1, we can solve for the exact k-means using

dynamic programming in O(n2k) time using O(nk) memory.

We quickly recall that P is the class of decision problems (that is, answering

yes/no questions) that can be solved in polynomial time, and NP is the class

of problems for which one can verify the solution in polynomial time (like

for example, 3-SAT6). The NP-complete class is that class of problems that

can be solved one from another by using a polynomial-time reduction scheme:

X ∝polynomial Y, ∀Y ∈ NP. The NP-hard class is the class of problems, not

necessarily in NP, such that ∃Y ∈ NP− Complete ∝polynomial X.

Since the k-means problem is theoretically NP-hard, we seek efficient

heuristics to approximate the cost function. We distinguish two classes of such

heuristics:

1. global heuristics that do not depend on initialization, and

2. local heuristics that iteratively starts from a solution (a partition) and

iteratively improves this partition using “pivot rules.”

Of course, one need to initialize local heuristics with a global heuristic.

This yields many strategies for obtaining in practice a good k-means clustering!

Finding novel k-means heuristics is still an active research topic 50 years after

its inception!

7.3 Lloyd’s batched k-means local heuristic

We now present the celebrated Lloyd’s heuristic (1957) that consists from a

given initialization to iteratively repeat until convergence the following two

steps:

Assign points to clusters. For all xi ∈ X, let li = argminl‖xi − cl‖2, and
define the k cluster groups as Gj = {xi : li = j} with nj = |Gj |, the
number of elements of X falling into the j-th cluster.

Update centers. For all j ∈ {1, ..., k}, update the centers to their cluster cen-

troids : cj =
1
nj

∑
x∈Gj

x (or the barycenters cj =
1∑

x∈Gj
w(x)

∑
x∈Gj

w(x)x

6 The 3-SAT problem consists in answering whether a boolean formula with n clauses
of 3 literals can be satisfiable or not. 3-SAT is a famouns NP-complete problem
(Cook’s theorem, 1971), a corner stone of theoretical computer science.

196 7. Partition-based clustering with k-means

for weighted data-sets).

Figure 7.4 illustrates a few iterations of Lloyd’s algorithm.

(a) input point cloud (b) random seed initialization

(c) assign points to clusters (d) new centers = centroids

Figure 7.4 Illustration of Lloyd’s k-means algorithm: (a) input data set, (b)

random initialization of cluster centers, (c) assigning points to clusters, (d)

center relocations, etc. until the algorithm convergences into a local minimum

of the cost function.

Theorem 5

Lloyd’s k-means heuristics converge monotonically into a local minimum after

a finite number of iterations, upper bounded by
(
n
k

)
.

7.3 Lloyd’s batched k-means local heuristic 197

Proof

Let G
(t)
1 , ..., G

(t)
k denote the partition of X at time t, with cost ek(X,Ct). Let

G(Ct) = 	k
j=1G

(t)
i denote the clusters induced by the k centers Ct. At stage

t+1, since we assign points to clusters that have the nearest squared euclidean

distance, we minimize:

ek(X;G(t+1)) ≤ ek(X,G(Ct)).

Now, recall that the k-means cost function is equal to the weighted sum

of the intra-cluster variances: ek(X;G(t+1)) =
∑k

j=1 v(G
(t+1)
j , cj). When we

update the cluster centers to their centroids (that are the points that minimize

the squared Euclidean distance in these groups), we have for each group

v(G
(t+1)
j , c(G

(t+1)
j)) ≤ v(G

(t+1)
j , cj). Thus we deduce that:

ek(X;Ct+1) ≤ ek(G
(t+1);Ct) ≤ ek(X;Ct).

Since ek(X;C) ≥ 0 and that we can never repeat twice the same partitions

among the O(
(
n
k

)
) potential partitions7, we necessarily converge into a local

minimum after a finite number of iterations.

Let us now present a few remarkable observations on the k-means clustering:

Observation 1

Although that Lloyd’s heuristic perform remarkably well in practice, it has been

shown that in the worst-case we can have an exponential number of iterations,

even in the planar case d = 2 [88, 42]. In 1D, Lloyd’s k-means can require Ω(n)

iterations until convergence [42]. But recall that the 1D case can be solved

polynomially using dynamic programming.

Observation 2

Even if the k-means cost function as a unique global minimum, there can be

exponentially many partition solutions that yield this minimum value (one

single min but many argmin): For example, let us consider the 4 vertices of

a square. For k = 2, we have two optimal solutions (from the vertices of the

parallel edges). Let us now clone n
4 copies of this square, each square located

very far away to each other, and consider k = n
4 : In that case, there exists 2k

optimal clusterings.

7 The number of distinct partitions of a set of n elements into k non-empty subsets

is defined by the second kind of Stirling number:

{
n
k

}
= 1

k!

∑k
j=0(−1)k−j

(
k
j

)
jn.

198 7. Partition-based clustering with k-means

Observation 3

In some cases, after assigning points to clusters in Lloyd’s batched heuristic,

we can obtain empty clusters: This case happens rarely in practice but its

probability increases with the dimension. Thus one has to take care when

implementing Lloyd’s k-means of these potential empty cluster exceptions. One

such configuration is illustrated in Figure 7.5. Note that this problem is in fact

a blessing, since we can choose new center points in order to reinitialize those

empty clusters while ensuring that the sum of cluster variances decreases.

center initialization
assigning points

to clusters

updating

centers

a cluster

becomes

empty!

Figure 7.5 Empty cluster exceptions in Lloyd’s heuristic: Cluster centers are

depicted with large circles. Initialization followed by an assignment step with

a center relocation step, and new assignment step. One of the cluster becomes

empty.

Lloyd’s k-means are a local heuristic that starts from a given initialization

(either induced by an initial set of k prototypes, or by a given starting partition

that induces the centroid prototypes) and guarantees monotonous convergence

to a local minimum. We shall now describe a few initialization methods: That

is, global heuristics for k-means.

7.4 Initializing k-means with global heuristics

7.4.1 Random seed initialization (as known as Forgy’s
intialization)

Let us choose the k distinct seeds randomly from X (for example, by sampling

uniformly the k indices from [n] = {1, ..., n}). There are
(
n
k

)
such different

random drawings. Then we create the group partition G(C) = {G1, ..., Gk}

7.4 Initializing k-means with global heuristics 199

from the seed variates C = {c1, ..., ck}. There is no theoretical guarantee that

ek(X,G) is close to the global minimum e∗k(X,G) = minC ek(X,G). Thus in

order to increase the chance of finding a good initialization, not too far from

e∗k(X,G), we can initialize l times to get the seed sets C1, ..., Cl and keep the

best seeds that yielded the best k-means cost so far: That is, keep Cl∗ with l∗ =
argminlek(X;G(Cl)). This method is sometimes called Forgy’s initialization

with l restarts in software packages.

7.4.2 Global k-means: The best greedy initialization

In the global k-means, we first choose randomly the first seed c1, then greedily

choose the seeds c2 to ck. Let C≤i = {c1, ..., ci} denote the set of the first i

seeds. We choose ci ∈ X in order to minimize ei(X,C≤i) (there are only n−i+1

possible choices that can be exhaustively tested). Finally, we consider for c1 all

the n potential choices c1 = x1, ..., c1 = xn, and we keep the best seed set.

7.4.3 k-Means++: A simple probabilistically-guaranteed
initialization

Let us now consider a probabilistic initialization that guarantees with high

probability a good initialization. Denote by e∗k(X) = minC ek(X;C) =

ek(X,C∗) the global minimum value of the k-means cost, with C∗ =

argminCek(X;C). A (1 + ε)-approximation of the k-means is defined by a set

of prototypes C such that:

e∗k(X) ≤ ek(X,C) ≤ (1 + ε)e∗k(X).

In other words, the ratio ek(X,C)
e∗k(X) is at most 1 + ε.

The k-means++ initialization choose iteratively the seeds by weighting the

elements xi’s according to the squared Euclidean distance of xi to the already

chosen seeds. Let D2(x,C) denote the minimum squared Euclidean distance of

x to an element of C: D2(x,C) = minc∈C ‖x− c‖2.
For a weighted set X, the k-means++ initialization procedure writes as

follows:

– Choose c1 uniformly randomly in X. If we had shuffled X beforehand, we

set C++ = {c1}.
– For i = 2 to k

200 7. Partition-based clustering with k-means

Draw ci = x ∈ X with probability:

p(x) =
w(x)D2(x,C++)∑
y w(y)D

2(y, C++)

C++ ← C++ ∪ {ci}.

Theorem 6 (k-means++ [3])

k-Means++ probability initialization guarantee with high probability that

E[ek(X,C++)] ≤ 8(2 + ln k)e∗k(X).

That is, the k-means++ are Õ(log k) competitive. The notation Õ(·)
emphasizes the fact that the analysis is probabilistic in expectation. The

technical proof is reported in the paper [3]. Here, to give a flavor of the tools

used in the proof, we shall give an elementary proof in the case of k = 1 cluster.

That is, we choose randomly a point x0 ∈ X. Let c∗ denote the center of mass

of X.

We have:

E[e1(X)] =
1

|X|
∑
x0∈X

∑
x∈X

‖x− x0‖2.

We shall use the following variance-bias decomposition for any z:

∑
x∈X

‖x− z‖2 −
∑
x∈X

‖x− c∗‖2 = |X|‖c∗ − z‖2.

Thus we deduce that

E[e1(X)] =
1

|X|
∑
x0∈X

(∑
x∈X

‖x− c∗‖2 + |X|‖x0 − c∗‖2
)
,

= 2
∑
x∈X

‖x− c∗‖2,

= 2e∗1(X).

Hence, in the case of k = 1 cluster, by randomly choosing the first seed c1
uniformly in X, we guarantee in expectation a 2-approximation.

7.5 Application of k-means to Vector Quantization (VQ) 201

7.5 Application of k-means to Vector
Quantization (VQ)

7.5.1 Vector quantization

In vector quantization (VQ for short), we are given a set X = {x1, ..., xn} that

we seek to encode with words c1, ..., ck. This dictionary of words is called a

codebook. We define the encoding and decoding functions as follows:

– quantization function i(·): x ∈ R
d → {1, ..., k}

– decoding function: c(·)
To compress and code a message (t1, ..., tm) of m elements of an alphabet X

of n characters (ti ∈ X), we associate to each ti its code i(ti) via the encoding

function i(·) that belongs to the k words of the code book. For example, we

may quantize the 24-bit colors of an image (encoded using 3 color channels, ’R’

for red, ’G’ for green, and ’B’ for blue) into k distinct color levels using vector

quantization (the k-prototypes of the k-means ran on all the pixel colors). Thus

instead of coding an image of dimension m = w × h pixels using 24m bits, we

rather code the (R,G,B) colors of a palette of size k, and then encode the

pixel colors using m × log k bits (the contents of the image). Thus we save

memory storage or shrink communication time for sending an image over a

digital channel.

The distortion error introduced by the quantization of colors into an

alphabet of k letters is E = 1
n

∑n
i=1 ‖x − c(i(x))‖2, the Mean Square Error

(MSE).

k-Means clustering allows one to find a code book minimizing (locally)

the MSE: ek(X,C) = v(X)− v(C). Here, the variance denotes the information

spread, and we seek to minimize this loss of information. Indeed, we can rewrite

the k-means cost function as follows:

ek(X,C) =

n∑
i=1

k
min
j=1

‖xi − cj‖2,

= v(X)− v(C),with C = {(nj , cj)}kj=1

Thus, k-means can be reinterpreted as the minimization of the difference

between the variances of X and its quantization by k centers C. In other words,

quantization asks to minimize the difference between the variance of a discrete

random variable on n letters and the variance of a discrete random variable on k

letters. The variance plays the role of information, and we seek to minimize this

202 7. Partition-based clustering with k-means

difference of information between these two random variables. In Information

Theory (IT), this is related to rate distortion theory.

7.5.2 Lloyd’s local minima and stable Voronoi partitions

For all xi ∈ X, we associate a label in N:

lC(x) = arg min
j∈{1,...,k}

‖x− cj‖2

We can extend this labeling function to the full space X, and we obtain a

partition of X called a Voronoi diagram. This partition of space is illustrated

in Figure 7.6. A Voronoi cell Vj of the Voronoi diagram is defined by:

Vj = {x ∈ R
d : ‖x− cj‖ ≤ ‖x− cl‖ ∀l ∈ {1, ..., n}}.

Here, let us remark that the squared Euclidean distance or the ordinary

Euclidean distance yields to the same Voronoi diagram that decomposes the

space into proximity cells. In fact, Voronoi cells do not change if we apply any

strictly monotonous function on the base distance. The square function is such

an example of a monotonous function on R+.

c1

c2 c3c4

c5

c6

p|lC(p) = 1

q|lC(q) = 3

Figure 7.6 Voronoi diagram induced by k centers C, called generators, and

Voronoi partition of X induced by C.

Now, let us note that once Lloyd’s k-means heuristic has converged, the

cluster groups Gi make a Voronoi partition, and have the convex hulls (co) of

7.6 A physical interpretation of k-means: The inertia decomposition 203

their groups pairwise disjoint: ∀i �= j, co(Gi) ∩ co(Gj) = ∅ where:

co(X) = {x : x =
∑
xi∈X

λixi,
n∑

i=1

λi = 1, λi ≥ 0}.

7.6 A physical interpretation of k-means: The
inertia decomposition

Let us consider X = {(xi, wi)}i as n body masses located at positions xi’s

with respective weights wi’s. In Physics, the concept of inertia measures the

resistance of a body when we move it around a given point. We measure the

total inertia I(X) of a point cloud X as the sum of squared Euclidean distances

of points of X with respect to its center of mass c =
∑k

i=1 wixi:

I(X) :=

n∑
i=1

wi‖xi − c‖2.

Thus, when we increase the masses on points, inertia increases too (i.e.,

it becomes more difficult to rotate the point set around its center of mass).

Similarly, when we consider points getting farther away of the center of mass,

it also becomes harder to rotation this point cloud around its center of mass

c. Therefore k-means can be reinterpreted physically as the task to identify

k groups such that the sum of inertia of these groups with respect to their

barycenters is minimal. Huygens’ formula report an invariant or a mathematical

identity between the total inertia of the system and its decomposition into the

sum of the intra-group inertia plus the inertia of the inter-groups:

Theorem 7 (Huygens’ formula: Inertia decomposition)

The total inertia I(X) =
∑n

i=1 wi‖xi − x̄‖2 equals to Iintra(G) + Iinter(C) with

the intra-group inertia Iintra(G) =
∑k

i=1 I(Gi) =
∑k

i=1

∑
xj∈Gi

wj‖xj − ci‖2
and the inter-group inertia Iinter(C) =

∑k
i=1 Wi‖ci − c‖2 (a unique centroid c)

with Wi =
∑

x∈Gi
w(x).

Figure 7.7 illustrates two decompositions of inertia that have the same total

inertia. Since the total inertia is invariant, minimizing the intra-group inertia

amounts to maximize the inter-group inertia.

204 7. Partition-based clustering with k-means

total inertia
intra-group inertia

+

inter-group inertia

=

Figure 7.7 The total inertia of a system of point masses is invariant by group

decomposition. k-Means optimizes the decomposition that minimizes the intra-

group inertia.

7.7 Choosing k in k-means: Model selection

Until so far, we have considered that the number of clusters k was prescribed,

and known beforehand. This is not true in practice when one performs

exploratory data analysis, and k has to be guessed as well. Finding the

right value of k is an important problem referred to as model selection in

the literature. For any value of k, we can consider the optimal k-means

cost function e∗k(X) (that can be estimated empirically in practice, say using

Lloyd’s heuristics on several initializations). Let us notice that ek(X) decreases

monotonically until reaching en(X) = 0 (in that case, each point is trivially

allocated to its own cluster).

7.7.1 Model selection via the elbow method

To choose a correct value for k, one can use the so-called elbow method. This is a

visual procedure: First, we plot the function (k, ek(X)) for k ∈ [n] = {1, ..., n},
and we choose k that defines the inflexion point: the elbow (separating the

forearm from the arm). The reason to choose this value of k is that for small

k values, the sum of cluster variances decreases quickly and then starting from

some value, the sum of variances describes a plateau. This visual inspection

method is called the “elbow method” because the function f(k) = ek(X) looks

like an arm on practical data-sets (with the plateau being the forearm): The

elbow returns the optimal number of clusters. One drawback of this method

is that it is computationally very expensive, and sometimes (depending on the

7.7 Choosing k in k-means: Model selection 205

data-sets), the inflexion point between the sharp decrease and the plateau is

not so well defined!

k

2 3 4 5 6 7 8 9 10

k
-m

ea
n
s
ob

je
ct
iv
e
fu
n
ct
io
n
e k
(X

)

forearmarm

elbow

Figure 7.8 Choosing k with the elbow method: the elbow defines the value

of k that separates the area of high decrease (the arm) to the plateau area (the

forearm).

7.7.2 Model selection: Explaining variance reduction with
k

We calculate the proportion of variance that is explained by k classes:

R2(k) =
Iinter(k)

Itotal
.

We have 0 < R2(k) ≤ 1. We then choose k∗ that minimizes the ratio
R2(k)

R2(k+1) :

k∗ = argmin
k

(
R2(k)

R2(k + 1)

)
.

We have presented two essential methods to choose the right value of k, the

number of clusters. In machine learning, k denotes the complexity of the model,

and choosing k is therefore called the model selection problem. There exists

some algorithms that perform clustering without requiring to know beforehand

k. For example, affinity propagation [32] (2007) is such a popular algorithm, or

a fast convex relaxation minimization of k-means [59] (2007).

206 7. Partition-based clustering with k-means

7.8 Parallel k-means clustering on a cluster of
machines

There are many ways to design a parallel version of Lloyd’s k-means heuristic

on a cluster of computers : That is, on a set of interconnected machines that we

consider as a “super-computer” with distributed memory (one local memory

for each machine). As usual, for sake of simplicity, we consider that each

computer has a single processing core (a processing unit) and associates a

node to each machine to describe the communication links by a graph. Those

different processors communicate with each other by sending and receiving

messages using the MPI interface: The Message Passing Interface. Sending a

message has a communication cost that is split into two terms: one for the

latency of initialization the communication and one that is proportional to

the length of the message. Sending structured data requires first to serialize

it into a universal “string” before sending (encoding) at the sender node and

to reconstruct it (de-serialize the string to reconstruct the structure) at the

receiver node.

A k-means clustering problem can be characterized by the number of

attributes (that is, the dimension of the data point cloud), the number of

data elements n, and the number of clusters, k. We consider k << n (that is,

k = o(n)) so that all cluster centers requiring a memory space O(dk) can be

stored into the local memory of each machine. Since in practice the memory

(RAM) is fixed (that is, O(1)), that means that we consider theoretically the

special case of k = O(1) here. However, the number of elements n is considered

(very) large compared to k, so that the full data-set X need to be distributed

among the P processors (since X cannot be fully contained in the RAM of a

single computer).

In order to design a simple but efficient parallel k-means heuristic, we rely

on the following composability/decomposability theorem:

Theorem 8 (Composability of barycenters)

Let X1 and X2 be two weighted data-sets with respective overall weights W1 >

0 and W2 > 0. We have:

x̄(X1 ∪X2) =
W1

W1 +W2
x̄(X1) +

W2

W1 +W2
x̄(X2)

where x̄(Xi) denotes the barycenter for Xi, for i ∈ {1, 2}.

This property turns out to be essential for distributed the centroid

computation on a partition of X into P subsets X1, ..., XP where P is the

7.8 Parallel k-means clustering on a cluster of machines 207

number of processors (or machines of the cluster). The parallel algorithm is

described in pseudo-code in Algorithm 5.

At run time, each processor knows the overall number of processors

of the cluster, P , by using the function MPI Comm size(), and its rank

number indexed between 0 and P − 1 by using the standard MPI function

MPI Comm rank(). It is the task of processor P0 (the root machine) to initialize

the k cluster prototypes and to broadcast them to all other processors using the

primitive MPI Bcast(C, root processor). Then we loop until convergence using

a while structure: Each processor Pl computes the labeling of its group of data

Xl, and the cumulative sum of the vectors of the k groups corresponding to Pl

with the local cardinality of each cluster. Then we aggregate and broadcast all

those group cardinals using the MPI primitive MPI Allreduce. The aggregation

operation (that is associative and commutative) can be chosen among a set of

binary operators like + or min, etc. We specify this binary operation as an

argument of the MPI primitive MPI Allreduce: Here, it is MPI SUM to indicate

the cumulative sum operation. Since some clusters in some partial data-sets

associated to machines may be empty, we take of those cases when computing

the local centroids (see the max(nj , 1) operation in Algorithm 5).

A complete source code using the C API of OpenMPI is syntaxically

different from the algorithm 5 written in the pseudo-code as the arguments

in the MPI primitives ask for the length of the message, the type of data to be

communicated, etc.

208 7. Partition-based clustering with k-means

/* Distributed k-means clustering in MPI */

p = MPI Comm size();

r = MPI Comm rank();

previousMSE = 0;

/* Mean Square Error, the cost function for the k-means */

MSE =∞;

if r = 0 then

/* Initialize randomly the cluster seeds */

Initialize C = (c1, ..., ck);

MPI Bcast(C, 0);

end

while MSE �= previousMSE do

previousMSE = MSE;

MSE′ = 0;

for j = 1 to k do

m′j = 0;

n′j = 0;

end

for i = r(n/p) to (r + 1)(n/p)− 1 do

for j = 1 to k do

Calculate di,j = d2(xi,mj) = ‖xi −mj‖2;
end

Find the closest centroid ml to xi: l = argminj di,j ;

/* Update stage */

m′l = m′l + xi;

n′l = n′l + 1;

MSE′ = MSE′ + d2(xi,ml);

end

/* Aggregate: make use of the composability property of

centroids */

for j = 1 to k do

MPI Allreduce(n′j , nj ,MPI SUM);

MPI Allreduce(m′j ,mj ,MPI SUM);

/* To prevent dividing by zero */

nj = max(nj , 1);

mj = mj/nj ;

end

/* Update the cost function */

MPI Allreduce(MSE′,MSE,MPI SUM);

end

Algorithm 5: Lloyd’s parallel k-means heuristic using MPI.

7.9 Evaluating clustering partitions 209

In this distributed implementation of k-means, we optimize the sequential

code by an optimal speed-up P .

7.9 Evaluating clustering partitions

In order to evaluate the performances of the various clustering techniques (like

the various k-means local/global heuristics), it is important to have ground-

truth data-sets that tell us for each data element is true cluster membership.

Without these ground-truth data sets, we could only perform a subjective or

qualitative evaluation of the clustering methods. Although that in 2D, Human

eyes can amazingly evaluate whether the obtained clustering is good or not, it

becomes impossible to visualize in dimensions d > 3.

When ground-truth data-sets are available (say, data-sets annotated by

experts), we can compute various metrics that are quantitative values that

measure the similarity of two partitions: the one induced by the labels in the

ground-truth data-set (assumed to be the optimal clustering by definition!) and

the one reported by an automatic clustering algorithm.

7.9.1 The Rand index

The Rand index (1971) computes the similarity of two partitions as follows: Let

G = 	Gi and G′ = 	G′i be the cluster decomposition of the k-means heuristic

and of the ground-truth data-set, respectively.

We compare all the
(
n
2

)
pairs (xi, xj) of points, and count those that belong

to the same cluster (a) from those that are found to belong to different clusters

(b). Thus we obtain the Rand index that belongs to the interval [0, 1]:

Rand(G,G′) =
a+ b(

n
2

)
with

– a: #{(i, j) : l(xi) = l(xj) ∧ l′(xi) = l′(xj)},
– b: #{(i, j) : l(xi) �= l(xj) ∧ l′(xi) �= l′(xj)},
where l(cot) and l′(cot) are the two cluster labeling functions of the ground-

truth clustering and the automatic clustering.

Notation: condition1 ∧ condition2 denotes that both conditions have to

be true in order to be true (logic AND operator). Let us remark that the

210 7. Partition-based clustering with k-means

Rand index avoids us to relabel the k groups in order to make the two

partitions compatible with each other: Indeed, there are k! such permutation

relabeling that we should take into account otherwise, and it is therefore not

computationally-tractable (since k! grows exponentially with k) to consider

them in practice! A more sophisticated implementation of the Rand index often

used in practice is called the adjusted Rand index [49] (1985).

7.9.2 Normalized Mutual Information (NMI)

The Normalized Mutual Information (NMI) is a notion that is well-defined in

Information Theory. Let nj,j′ = {x ∈ Gj ∧ x ∈ G′j′}. Then the NMI is defined

as:

NMI(G,G′) =

∑k
j

∑k′

j′ nj,j′ log
n×nj,j′
njnj′√(∑k

j nj log
nj

n

)(∑k′
j′ n

′
j log

n′
j

n

)
NMI is an estimation of the information-theoretic quantity:

I(X;Y)√
H(X)H(Y)

,

where I(X;Y) denotes the mutual information between two random variables,

and H(·) denotes the Shannon entropy of a random variable.

7.10 Notes and references

We described a way to cluster data by minimizing a cost function: the sum of

intra-cluster variances of the k clusters. Historically, the methodology of the

k-means has been first introduced by Hugo Steinhaus [81] in 1956 (by studying

the inertia of a body), and has been rediscovered many times independently

later on (like in vector quantization, VQ), etc. In this chapter, we have

described the usual k-means techniques. A full description of k-means requires

its own textbook! Depending on the cost function, one can obtain more or less

efficient optimization algorithms, and the obtained clustering can be more or

less adapted to the data-sets. In fact, when one describes axiomatically the

properties of a good clustering, it can be shown that there does not exist any

cost function to optimize that fulfills those properties [55] (see also [91, 17]).

7.10 Notes and references 211

Lloyd’s batched heuristic has been first reported in details in [62], in 1957.

In practice, Hartigan’s single-swap heuristic (described in the exercise 7.12)

is getting again more and more popular since it is more efficient and provably

reaches better local minima than Lloyd’s method. The k-means++ probabilistic

initialization dates back from 2007. A deterministic initialization for k-

means is described in [65] (2000): One get a (1 + ε)-approximation in time

O(ε−2k2dn logk n). Among the NP-hard problems, k-means is rather “easy” to

approximate because it admits a Polynomial Time Approximation Scheme (or

PTAS for short) [5]: That is, for any ε > 0, one gets a (1+ ε)-approximation of

the k-means cost function in polynomial time.

k-Means have been reported on a distributed memory parallel architecture

using the MPI interface in [26]. Lloyd’s heuristic is updating the point assign-

ment to clusters at each stage (batched k-means): one can also update after

each point relocation by considering the points one by one. This is precisely

the MacQueen’s heuristic [63] (1967) that is mentioned in exercise 7.12. k-

Means++ is intrinsically a sequential algorithm and its generalization to

parallel architectures, termed k-means||, has been proposed in [10]. Nowadays,

with the wide availability of big size data-sets, one even seeks to cluster

large data-sets with billions (k) of clusters [8]. The core-sets approximation

techniques [28] allows one to reduce very large data-sets into tiny data-sets by

trading the exact cost function minimization by a controlled approximation of

it. Another construction method of such core-sets in parallel has been reported

in[11] (2013). Another hot topic in data clustering is to be able to cluster data

among different entities while preserving the privacy of data elements. In [87],

a method is given to perform privacy-preserving data clustering on vertically

partitioned data8 with Lloyd’s k-means heuristic.

We have emphasized on the fact that the k-means objective function seek to

detect globular-shaped clusters. Although the k-means is often used in practice,

it is not (by far!) a universal solution for clustering. For example, Figure 7.9

depicts a data-set that is easy to cluster by Human eye-brain systems; However,

the k-means optimization will not obtain a desired partitioning. This is because

k-means report Voronoi partitions However, this kind of data-set is handled

using kernel9 k-means [25].

8 Vertical partitioning means that each entity has only a block of attributes
9 It is mathematically always possible to separate data by increasing by lifting the
features into higher dimensions using a kernel mapping.

212 7. Partition-based clustering with k-means

Figure 7.9 Example of a data-set for which k-means fails to cluster

appropriately into two clusters. Indeed, k-means is limited to report Voronoi

partitions with disjoint group convex hull. In practice, such a data-set is

clustered using a kernel method.

7.11 Summary

Exploratory data analysis consists in finding structures in data-sets that bring

knowledge of these data-sets. Clustering is a set of techniques that partitions

data into homogeneous groups, and thus allows one to discover classes, with

potential semantic meaning for each class. Clustering by k-means asks to

minimize the weighted sum of intra-cluster variances by assigning to each

group a center: its prototype that plays the role of the model for that cluster.

That is, k-means clustering belongs to the family of model-based clustering.

Minimizing the k-means objective function is a NP-hard problem in general,

and the celebrated Lloyd’s heuristic consists in repeating until convergence the

following two steps: (1) assignment of data points to their closest cluster center,

and (2) update the cluster centers by setting the centers (prototypes) to their

cluster centroids. Lloyd’s heuristic is guaranteed to converge monotonically to

a local minimum that is characterized by a Voronoi partition induced by the

cluster centers. Since we do not know a priori the number of clusters k, we

need to estimate it by performing a model selection: a usual rule of thumb

consists in choosing the value of k that minimizes the ratio of the sum of

intra-cluster variances for k and k + 1, and that can be visually interpreted as

the elbow (hence the name, elbow method), the inflexion point in the graph

plot of the cost function ek(·). Lloyd’s k-means can be easily parallelized on a

distributed memory architecture by using the MPI interface and by using the

decomposition property of centroids: The centroid (or barycenter) of a data set

7.12 Exercises 213

partitioned into groups amounts to equivalently compute the barycenter of the

centroids (or barycenters) of the groups.

Processing code for Lloyd’s k-means algorithm

Figure 7.10 displays a snapshot of the processing.org program.

Figure 7.10 Snapshot of the processing code for Lloyd’s k-means heuristic.

WWW source code: kmeansLloydProcessing.pde

7.12 Exercises

Exercise 1: Barycenter and variance with non-normalized positive weights

– For a positive vector w = (w1, ..., wn) ∈ R
d
+ (not normalized to one) on data-

214 7. Partition-based clustering with k-means

set X = {x1, ..., xn}, prove that weighted sum of squared Euclidean distance

to the center
∑n

i=1 wi‖xi − c‖2 is minimized for the barycenter x̄:

x̄ =
n∑

i=1

wi

W
xi,

where W =
∑n

i=1 wi is the total sum of weights and that the non-normalized

variance can be written as:

v(X,w) =
n∑

i=1

wi‖xi − x̄‖2 =

n∑
i=1

wi‖xi‖2 −Wx̄2.

– Observe that this formula amounts to take normalized weights w̃i =
wi

W in

the classic (normalized weight) formula.

– What happens when some weights are negative? Can we still guarantee the

uniqueness of the minimizer?

– Deduce the composability formula of barycenters: Let {Xi}i∈{1,...,k} be k

weighted data-sets with respective total weights Wi. Prove that:

x̄(k
i=1Xi) =

k∑
i=1

Wi∑k
j=1 Wj

x̄(Xi),

where x̄(Xi) are the barycenters of the Xi’s.

Exercise 2: Center of mass for scalars (d = 1)

Prove that the arithmetic mean c = 1
n

∑n
i=1 xi is also an equilibrium centers

since we have the following property:∑
xi<c

(c− xi) =
∑
xi≥c

(xi − c).

Exercise 3: Bias-variance decomposition

Let v(X, z) =
∑

x∈X ‖x− z‖2 and v(X) = v(X, x̄) with x̄ = 1
n

∑
i xi.

– Prove that v(X, z) = v(X) + n‖x̄ − z‖2. Deduce that the center of mass x̄

minimizes v(X, z).

– Generalize this decomposition to weighted point sets X = {(xi, wi)}i.
– Interpret X as a discrete random variable, and prove the bias-variance

decomposition formula for an arbitrary random variable.

7.12 Exercises 215

Exercise 4: k-Medoids (as known as discrete k-means)

Let us minimize the k-means cost function by constraining the prototypes cj
to belong to the data-elements, the xi’s.

– Prove using the bias-variance decomposition that the best cost of the k-

medoids is at most twice the best cost of k-means.

– Deduce a heuristic for the k-means where prototype are constrained to belong

to the initial data-set (batched assignment).

– Provide an upper bound on the maximal number of iterations of your

heuristic.

Exercise 5: Inta-cluster distance minimization and inter-cluster distance

maximization

Let X = {x1, ..., xn} be a data-set of n elements (quantitative or categorical

attributes), and D(xi, xj) ≥ 0 a dissimilarity function between any two

arbitrary elements xi ∈ X and xj ∈ X. Prove that for a given partition

of X into k clusters C1, ..., Ck that minimizing the intra-cluster pairwise

distances
∑k

l=1

∑
xi∈Cl

∑
xj∈Cl

D(xi, xj) is equivalent to maximize the pairwise

inter-cluster distances
∑k

l=1

∑
xi∈Cl

∑
xj �∈Cl

D(xi, xj). For categorical attribute

data-sets, one can consider the Jaccard distance,D(xi, xj) =
|xi∩xj |
xi∪xj

, and cluster

with the k-medoid technique described in the exercise 7.12.

Exercise 6: MacQueen’s local k-means heuristic [63]

MacQueen’s local k-means heuristic updates iteratively the cluster prototypes

by assigning the points one by one to clusters until it converges:

– Initialize cj = xj for j = 1, ..., k

– Assign incrementally data elements x1, ..., xn in a cyclic sequence until

convergence: Assign xito its nearest cluster center cj of C, and update this

center: we remove xi from its current center and assign it to its new center.

216 7. Partition-based clustering with k-means

– Prove the following update formula:

cl(xi) ←
nl(xi)cl(xi) − xi

nl(xi) − 1
, nl(xi) ← nl(xi) − 1

l(xi) = argminj‖xi − cj‖2

cl(xi) ←
nl(xi)cl(xi) + xi

nl(xi) − 1
, nl(xi) ← nl(xi) + 1

– Prove that local minima match the local minima of Lloyd’s batched k-means.

– What is the complexity of MacQueen’s heuristic?

Exercise 7: Hartigan’s k-means heuristic: Swap a point from a cluster to

another cluster [84]

We propose the following iterative k-means local heuristic: Consider in a cyclic

order the elements xi, one by one. For a given xi currently belonging to cluster

Gl(xi) with l(xi) = argminj∈{1,...,k}‖xi − cj‖2 its membership, we move xi into

another cluster Gl iff. the k-means cost function decreases.

1. Write mathematically Δ(xi, l): the gain of the cost function when xi is

swapped from Gl(xi) to Gl. For xi being swapped from a source cluster

Gsto a target cluster Gt, prove the following formula:

Δ(xi; s→ t) =
nt

nt + 1
‖ct − xi‖2 − ns

ns − 1
‖cs − xi‖2

2. Prove that Hartigan’s local minima are a proper subset of Lloyd’s local

minima.

3. Give in pseudo-code the Hartigan’s k-means local heuristic. What is the

complexity of this algorithm?

4. Observe that this heuristic always guarantees non-empty clusters at any

time (and behaves differently from Lloyd’s heuristic that may procedure

empty cluster exceptions).

Exercise 8: Horizontally versus vertically separated k-means parallel cluster-

ing [87]

Consider clustering n data of d attributes using a cluster of P machines. Assume

that d� n and propose a parallel implementation of the k-means algorithm by

7.12 Exercises 217

distributing the features among the machines (thus a portion of each datum is

stored on each machine). Compare your vertically separated implementation of

k-means with the horizontally separated parallel k-means (when data elements

are partitioned and distributed among the machines).

Exercise 9: ** k-Means clustering with Bregman divergences [12]

The k-means cost function can be generalized to Bregman divergences as

follows: ek(X,G) =
∑n

i=1 minj∈{1,...,k}DF (xi, cj). Bregman divergences are

defined for a strictly convex and differentiable generator F (x) by:

DF (x, y) = F (x)− F (y)− (x− y)�∇F (y),

where ∇F (y) = (d
dy1F (y), ..., d

dydF (y)) denotes the gradient operator (vector

of partial derivatives).

1. Prove that the squared Euclidean distance is a Bregman divergence but

not the Euclidean distance.

2. Prove that the minimizer of minc
∑n

i=1 wiDF (xi, c) is the barycenter x̄ =∑n
i=1 wixi. (In fact, one can prove that the only distortion measures that

ensure barycenters as minimizers are the Bregman divergences.)

3. Deduce the corresponding Bregman batches k-means and Bregman Harti-

gan’s k-means heuristics.

4. Prove that the composability property of barycenters still holds for

Bregman divergences.

Exercise 10: * k-Modes [48]

To cluster categorical data (that is, non-numerical data), one can use the

Hamming distance between any two d-dimensional attribute vectors x and

y: DH(x, y) =
∑d

j=1 1xj �=yj where 1a �=b = 1 iff. a �= b and zero otherwise.

Hamming distance is a metric satisfying the triangular inequality. Let tl,m be

the m-th category of the l-th dimension of an element.

1. Prove that the mode m = (m1, ...,md) with mj = tj,m∗ and m∗ =

argmaxm#{xj
i = tj,m} maximizes

∑n
i=1 wiDH(xi,m) where #{·} denotes

the cardinality of a data-set. That is, in other words, for each dimension,

we choose the dominant category for the mode.

2. Prove that the barycenter may not be necessarily unique by reporting a

counter example.

218 7. Partition-based clustering with k-means

3. Design a k-mode clustering heuristic that is inspired from k-means

heuristics, and show how one can use it to cluster a collection of text

documents.

4. Show how to combine k-means and k-modes to cluster mixed attribute

vectors (with some dimensions being numerical, and some other dimensions

categorical).

Exercise 11: Hegselmann-Krause model for opinion dynamics [44]

Consider a set of n individuals p1, ..., pn, represented as points of the d-

dimensional space Rd. At a given iteration, each individual updates its position

as the center of mass of all individuals falling within a distance less than a

prescribed threshold r (say, radius r = 1; thus including itself too), and repeat

this process until convergence (when individuals do not move anymore). At

convergence, there are at most k ≤ n distinct individuals (distinct opinions).

Implement in MPI this algorithm. What is the complexity of your algorithm?

How does this algorithm differ from the Lloyd’s k-means algorithm?

Exercise 12: ** Barycenters for an arbitrary convex distance

Let D(·, ·) be a strictly convex and twice differentiable distance function (not

necessarily symmetric nor satisfying the triangular inequality). We define the

barycenter x̄ of a weighted point cloud X = {(xi, wi)}i as the minimizer of

x̄ = argminc
∑n

i=1 wiD(xi, c).

– Prove that this barycenter is unique.

– Provide a geometric interpretation when zeroing the gradient

∇c(
∑n

i=1 wiD(xi, c)): The barycenter is the unique point that cancels

the vector field V (x) =
∑n

i=1 wi∇xD(xi, x).

Exercise 13: ** 1D k-means using dynamic programming [73]

Although that k-means in a NP-hard problem, in 1D, one can get a polynomial-

time algorithm using dynamic programming. First, one starts by sorting the

n scalars of X = {x1, ..., xn} in increasing order, in O(n log n) time. Therefore

we assume that x1 ≤ ... ≤ xn.

– We seek for a relationship between the optimal clustering for k clusters from

the optimal clustering for k − 1 clusters. Let Xi,j = {xi, ..., xj} denote the

7.12 Exercises 219

sub-set of scalars xi, ..., xj . Write the mathematical recurrence equation of

the best clustering ek(X1,n) using the terms ek−1(X1,j−1) and e1(Xj,n).

– Show how to find the optimal partition from the dynamic programming table

using backtracking. What is the complexity of your algorithm?

– By preprocessing the n scalars into three cumulative sums
∑j

l=1 wl,∑j
l=1 wlxi and

∑j
l=1 wlx

2
i , show how to calculate v(Xi,j) =∑j

l=i wi‖xl − x̄i,j‖ in constant time, where x̄i,j = 1
∑j

l=i wl

∑j
l=i wlxl.

Deduce that an optimal k-means partitioning can be exactly calculated in

1D in O(n2k) time.

