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ABSTRACT

We consider the space of w-mixtures that are finite statisti-
cal mixtures sharing the same prescribed component distribu-
tions, like Gaussian mixture models sharing the same compo-
nents. The information geometry induced by the Kullback-
Leibler (KL) divergence yields a dually flat space where the
KL divergence between two w-mixtures amounts to a Breg-
man divergence for the negative Shannon entropy genera-
tor, called the Shannon information. Furthermore, we prove
that the skew Jensen-Shannon statistical divergence between
w-mixtures amount to skew Jensen divergences on their pa-
rameters and state several divergence inequalities between w-
mixtures and their closures.

1. INTRODUCTION AND BACKGROUND

Let M1
+(Ω) denote the space of probability measures defined

on a σ-algebra Ω of an observation space X . Consider a
base measure µ ∈ M1

+(Ω) (usually the Lebesgue or count-
ing measure), and let P0, . . . , Pk−1 be k prescribed prob-
ability distributions, all dominated by µ (Pi � µ), with
pi = dPi

dµ the Radon-Nikodym derivative of Pi with respect to
µ. The density m(x;w) ∈ M1

+(Ω) of a w-mixture is defined
by m(x;w):=

∑k−1
i=0 wipi(x), with w:=(w0, . . . , wk−1) ∈

∆◦k−1, where ∆◦k−1 is the (k − 1)-dimensional open proba-
bility simplex sitting in Rk. Thus w-mixtures are strictly con-
vex weighted combinations of fixed component distributions:
They form special subfamilies of finite statistical mixtures [1]
that are closed by convex combinations.

Given multiple datasets O1, . . . ,On, a set of w-
mixtures m1 = m(x;w1), . . . ,mn = m(x,wn) (called
comixs [2]) can be learned simultaneously by generalizing
the Expectation-Maximization (EM) or the Classification EM
(CEM) algorithms. In particular, one can learn w-Gausian
Mixture Models [2] (w-GMMs) where the prescribed mixture
components are fixed Gaussian distributions.

The class of statistical f -divergences [3, 4, 5] between two
distributions p, q � µ defined on support X is defined by

If (p : q):=

∫
X
p(x)f

(
q(x)

p(x)

)
dµ(x) ≥ f(1), (1)

with f a convex function satisfying f(1) = 0. We have [6]
If (p : q) ≤ limε→0 f(ε) + εf( 1

ε ). For discrete distributions
with probability mass functions p := (p0, . . . , pd−1) and q :=

(q0, . . . , qd−1), it comes that If (p : q) =
∑d−1
i=0 pif( qipi ).

The f -divergences include the KL divergence (f(u) =
− log u), the χ2-divergence, the Hellinger divergence, the
α-divergences, the total variation TV(p, q):= 1

2

∫
X |p(x) −

q(x)|dµ(x) (with f(u) = 1
2 |1 − u|, the only f -divergence

metric [7] satisfying the triangle inequality), etc. The dual
divergence I∗f (p : q):=If (q : p) is obtained by taking the
dual generator f�(u):=uf

(
1
u

)
: If�(p : q) = If (q : p) =

I∗f (p : q). Thus f -divergences can always be symmetrized [8]
by taking the generator s(u) = f(u) + f�(u). Examples
of symmetric f -divergences are the Jeffreys divergence [9]
J(p; q):=KL(p : q) + KL(q : p) and the Jensen-Shannon di-
vergence [10] JS(p : q):=K(p : q) + K(q : p) with K(p :

q):=KL(p : p+q
2 ) =

∫
p(x) log 2p(x)

p(x)+q(x)dµ(x). Depending
on the generator f , the f -divergence may be either (1) un-
bounded when the integral diverges: If (p : q):= +∞ (e.g.,
KL between a standard Cauchy distribution and a standard
normal distributions), or (2) always bounded (e.g., Jensen-
Shannon divergence bounded by log 2).

The f -divergences between statistical mixtures [11, 12]
is not available in closed form although it can be easily
upper bounded by using the joint convexity property of f -
divergences: If (m : m′) ≤

∑
i,j wiw

′
jIf (pi : p′j) for

two mixture models m(x) =
∑
i wipi(x) and m′(x) =∑

j w
′
jp
′
j(x). In practice, to bypass this intractability, one es-

timates the f -divergence using Monte Carlo (MC) stochastic
integration [13] (Chapter 17): Let s iid. samples x1, . . . , xs ∼
p(x), and define the estimator Îsf (p : q):= 1

s

∑s
i=1 f

(
q(xi)
p(xi)

)
.

It follows from the Law of Large Numbers (LLN) that
lims→∞ Îsf (p : q) = If (p : q) provided that the variance

Varp

[
f
(
q(x)
p(x)

)]
is bounded. The MC estimator is consis-

tent (but the MC approximation does not hold when If (p :
q) = ∞). Furthermore, using the Central Limit Theorem
(CLT), the MC estimator is shown to be normally distributed:
Îsf (p : q) ∼ N

(
If (p : q), 1sVarp

[
f
(
q(x)
p(x)

)])
.

2861978-1-5386-4658-8/18/$31.00 ©2018 IEEE ICASSP 2018



1.1. Contributions

In §2, we describe the dually flat geometry of the space of w-
mixtures induced by the Kullback-Leibler (KL) divergence. It
proves that the KL divergence between any two w-mixtures is
equivalent to a Bregman divergence induced by the negative
Shannon entropy generator. As a byproduct, this allows us to
prove that the KL-averaging integration of w-mixtures used
in distributed estimation [14] can be performed optimally
without information loss. In §2.2, we show that the skew
Jensen-Shannon divergences between w-mixtures amount to
an equivalent skew Jensen α-divergences on their parameters.
Finally, we consider several divergence inequalities between
w-mixtures and their closures in §3.2.

2. GEOMETRY OF W -MIXTURES

We slightly depart from the constructions sketched in the text-
books [15, 9], in order to ease sanity checks.

When the k prescribed component distributions
p0(x), . . . , pk−1(x) are linearly independent, the space
M = {m(x;w) , w ∈ ∆◦k−1} of w-mixtures forms a mixture
family in information geometry [9, 16] with:

m(x;w) = m(x; η) =

k−1∑
i=1

ηipi(x) +

(
1−

k−1∑
i=1

ηi

)
p0(x),

(2)
with ηi = wi for i ∈ [k − 1] := {1, . . . , k − 1} and
w0 = 1 −

∑k−1
i=1 ηi = 1 −

∑k−1
i=1 wi. Let D = k − 1

denote the order of the mixture family, that is its num-
ber of degrees of freedom. We have m(x;w) = m(x; η),
where vector w is k-dimensional while vector η is (k − 1)-
dimensional. Let fi(x) = pi(x) − p0(x) for i ∈ [D], and
c(x) = p0(x). Then M can be written in the canonical
form of a mixture family in information geometry [9]: M ={
m(x; η) =

∑k−1
i=1 ηifi(x) + c(x), η ∈ ∆◦D

}
, where the

fi(x)’s and c(x) are linearly independent. By convention, we
define η0 = 1 −

∑D
i=1 ηi, the weight of p0. Beware that η0

is not a vector component of η = (η1, . . . , ηD) ∈ ∆◦D, the
D = (k − 1)-dimensional open probability simplex sitting in
Rd.

We considerM as a smooth manifold of η-mixtures. The
Shannon differential entropy [17] of a mixture m(x):

h(m):=−
∫
X
m(x) logm(x)dµ(x) (3)

is usually not available in closed-form [11, 12] because of the
log-sum term. Both lower and upper bounds on the entropy
of mixtures are reported in [11, 18]. For η-mixtures, the para-
metric function E(η) = −h(m(x; η)), is strictly convex and
differentiable. Thus we can form a dually flat manifold [15, 9]
where the Kullback-Leibler divergence between two mixtures

m(x; η1) andm(x; η2) amounts to calculate a Bregman diver-
gence [19] BF∗(η1 : η2) for the negative Shannon informa-
tion generator shifted by one [9]:

F ∗(η) =

∫
(m(x; η) logm(x; η)−m(x; η))dµ(x),(4)

=

∫
m(x; η) logm(x; η)dµ(x)− 1. (5)

Since the Shannon entropy is strictly concave, the negative
Shannon entropy called Shannon information [20] is strictly
convex (and a dually flat manifold can be built from any C3

convex function [5]). Let m1(x) = m(x; η1) and m2(x) =
m(x; η2) for short. We have

KL(m1 : m2) =

∫
m(x; η1) log

m(x; η1)

m(x; η2)
dµ(x),

= F ∗(η1)− F ∗(η2)− 〈η1 − η2,∇F ∗(η2)〉,
= BF∗(η1 : η2),

where 〈x, y〉 = x>y denotes the scalar product of RD. Al-
though the Shannon information of a w-mixture is a convex
function of η, it is not available in closed-form [21, 22]. The η
parameter is traditionally called the “expectation” parameter
in information geometry (although this stems from a property
of the exponential family manifolds [9]). The dual parameters
θ = (θ1, . . . , θD), called the natural parameters, are defined
by

θi(η) = (∇ηF ∗(η))i =

∫
(pi(x)− p0(x)) logm(x; η)dµ(x),

(6)
since (∇ηm(x; η))i = pi(x) − p0(x) and swapping ∇

∫
=∫

∇ (under regularity condition of Leibniz integral rule). The
extra constant−1 = −

∫
m(x; η)dµ(x) term in Eq. 4 is added

to get a nice expression of the θi’s in Eq. 6. The dual Leg-
endre convex conjugate [23] F (θ) of F ∗(η) defined by the
Legendre-Fenchel transform F (θ) = supθ{〈θ, η〉 − F ∗(η)}
is

F (θ) = −
∫

(p0(x) logm(x; η)−m(x; η))dµ(x), (7)

= −
∫
p0(x) logm(x; η)dµ(x) + 1 (8)

Function F (θ) is convex with respect to θ, and the gra-
dients of the convex conjugates are reciprocal, allowing one
to convert theoretically from one coordinate system into the
dual one: η = ∇F (θ) and θ = ∇F ∗(η). However, since
neither F or F ∗ are available in closed forms (except for the
multinomial family that are w-mixtures with prescribed Dirac
component distributions), those conversions are computation-
ally intractable. It follows that the KL divergence between
two η-mixture distributions ofM can be equivalently written
as
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KL(m1 : m2) =

∫
m(x; η1) log

m(x; η1)

m(x; η2)
dµ(x),

= BF∗(η1 : η2) = BF (θ2 : θ1), (9)
= DF∗,F (η1 : θ2) = DF,F∗(θ2 : η1),

where DF∗,F (η1 : θ2) = F ∗(η1) + F (θ2)− 〈η1, θ2〉 denotes
the canonical divergence [9] in dually flat spaces written us-
ing the mixed θ/η-coordinate systems.

Theorem 1 (KL of w-mixtures as a Bregman divergence).
The Kullback-Leibler divergence between two η-mixtures (or
w-mixtures) is equivalent to a Bregman divergence defined
for the convex Shannon information generator on the η-
parameters.

The information geometry of (M,KL) is said dually
flat [9] because the dual Christoffel symbol coefficients Γijk
and Γ∗ijk have all their coefficients equal to zero [24]. Thus
geodesics (autoparallel curves) are visualized as straight Eu-
clidean lines in either the η- or the θ-affine coordinate sys-
tems.

Corollary 1 (KL of w-GMMS as a Bregman divergence).
The KL between Gaussian Mixture Models sharing the same
components (w-GMM [2]) is equivalent (theoretically) to a
Bregman divergence.

2.1. Application: Optimal KL-averaging integration

Let us consider a computer cluster [26] of m machines
M1, . . . ,Mm with the independently and identically sam-
pled data-set O partitioned into m pieces: O1, . . . ,Om with
|Oi| = ni. Dataset Oi is stored locally in the mem-
ory of machine Mi. Liu and Ihler [14] proposed (1) to
estimate the m models locally (say, via Maximum Like-
lihood Estimators, MLEs, η̂i’s on the local samples Oi),
and then (2) to merge/aggregate those local model estimates
on a central node by performing KL-averaging integration.
When the models all belong to the same exponential family
(e.g., Gaussian models), they showed that the KL-averaging
model integration yields no information loss: For exponen-
tial families with log-density t(x)>θ − F (θ) (with θ the nat-
ural parameters, sufficient statistics t(x) and F (θ) the log-
normalizer), the KL-averaging integration [14] yields θ̂KL =

∇F−1
(

1
m

∑m
i=1∇F (θ̂i)

)
without information loss (with

MLE η̂i = ∇F (θ̂i) = 1
ni

∑
x∈Oi

t(x)). Notice that it re-
quires to manipulate explicitly both the log-normalizer F (θ)
and its inverse gradient function ∇F−1, see [14]. Interest-
ingly, they also report experiments on GMMs [14] that are
not exponential families with information loss.

However, for η-mixtures (mixture families), the KL-
averaging integration [14, 27] is defined by the following op-
timization problem:

η̂KL = arg min
η

m∑
i=1

KL(m(x; η̂i) : m(x; η)), (10)

= arg min
η

m∑
i=1

BF∗(η̂i : η). (11)

Since the right-sided Bregman centroid [28] is always
the center of mass whatever the chosen Bregman genera-
tor1, we end up with the optimal integration (best param-
eter) for η-mixtures: η̂KL = 1

m

∑m
i=1 η̂i (or equivalently,

ŵKL = 1
m

∑m
i=1 ŵi).

Theorem 2 (Optimal KL-averaging integration). The KL-
averaging integration of w-mixtures can be performed opti-
mally without information loss.

Note that the local model estimators of mixtures may not
be consistent nor efficient. In fact, the global Maximum Like-
lihood (ML) optimization requires to tackle an untractable
log-sum maximization for mixtures, and the exact MLE so-
lution for these mixtures maybe transcendental [29]. (In a
separate report, we study how w-mixtures can be inferred ef-
ficiently.)

2.2. Skew Jensen-Shannon divergences of w-mixtures

Let the skew α-Jensen-Shannon divergence be defined by

JSα(p : q):=(1− α)KL(p : mα) + αKL(q : mα),

for α ∈ [0, 1], and mα = (1−α)p+αq. Define the α-Jensen
divergences [30, 31] by JF∗,α(η1 : η2):=(1 − α)F ∗(η1) +
αF ∗(η2)−F ∗((1−α)η1+αη2), for the Shannon information
F ∗(η) = −h(m(x; η)). We have in the limit cases [30, 31]
for m1(x) = m(x; η1) and m2(x) = m(x; η2):

lim
α→1−

JF∗,α(η1 : η2)

α(1− α)
= BF∗(η1 : η2) = KL(m1 : m2)

lim
α→0+

JF∗,α(η1 : η2)

α(1− α)
= BF∗(η2 : η1) = KL(m2 : m1)

Since the combination of w-mixtures is a w-mixture,
mα(x):=(1 − α)m(x; η1) + αm(x; η2) = m(x; ηα = (1 −
α)η1 +αη2), plugging Shannon entropy h, we get JF∗,α(η1 :
η2) = h(mα) − (1 − α)h(m1) − αh(m2). Therefore we
rewrite

JF∗,α(η1 : η2) =∫ (
(1− α)m1(x) log

m1(x)

mα(x)
+ αm2(x) log

m2(x)

mα(x)

)
dµ(x)

and get JF∗,α(η1 : η2) = (1−α)KL(m1 : mα)+αKL(m2 :
mα) = JSα(m1 : m2). In particular, when α = 1

2 ,

1Here, it is specially interesting since F ∗ (the negative entropy) is not
available in closed form, and we bypass its use.
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JF∗, 12 (η1 : η2) = 1
2JS(m1 : m2) is the Jensen-Shannon

divergence [10], and when α → 1, 1
1−αJF∗,α(η1 : η2) =

KL(m1 : m2).

Theorem 3. The α-Jensen-Shannon statistical divergences
between η-mixtures amount to α-Jensen divergences between
their corresponding η-mixture parameters: JSα(m(x; η1) :
m(x; η2)) = JF∗,α(η1 : η2).

3. ON CLOSURES AND DIVERGENCES

3.1. Divergence inequalities for w-mixtures

Theorem 4 (Upper bound on f -divergences of w-mixtures).
The f -divergence If (m(x;w) : m(x;w′)) between any
two w-mixtures is upper bounded by If (w : w′) =∑k−1
i=0 wif(

w′i
wi

).

Proof. We use a generalization of the log-sum inequality
for any convex function f (see [32], p. 448): For two fi-
nite positive number sequences A = {ai}k−1i=0 and B =

{bi}k−1i=0 , we have
∑
i aif

(
bi
ai

)
≥ af

(
b
a

)
. It follows

that m(x;w)f
(
m(x;w′)
m(x;w)

)
≤
∑k−1
i=0 wipi(x)f

(
w′ipi(x)
wipi(x)

)
=∑k−1

i=0 wif
(
w′i
wi

)
pi(x) Carrying out integration on the sup-

port X , we get If (m(x;w) : m(x;w′)) ≤ If (w : w′) since∫
X pi(x)dµ(x) = 1. Recall that the KL divergence is a f -

divergence obtained for the generator f(u) = − log u.

3.2. Closures of w-mixtures

The manifoldM of w-mixtures is parameterized by the open
probability simplex ∆◦k−1. When topologically closing the
manifoldM, we consider ∆̄k−1. Take a l-face of the (d−1)-
dimensional simplex ∆◦k−1. When l > 0, the sub-simplex
σ ∈ ∆̄k−1 is a l-dimensional simplex, and σ◦ parameterizes
a w-mixture family of order l > 0. In the extreme case, we
consider order-1 w-mixture induced by a simplex edge σ1 ∈
∆◦k−1 with extremity component distributions p and q. Define
mε(p, q) = (1 − ε)p + εq = p + ε(q − p) = m1−ε(q : p)
for ε ∈ [0, 1]. In the limit cases, the w-mixtures mε yields
(with w ∈ ∆◦1): limε→0m

ε(p, q) = limε→1m
ε(q, p) = p

and limε→1m
ε(p, q) = limε→0m

ε(q, p) = q. Let Iεf (p :
q):=If (mε(p, q) : mε(q, p)). How “far” is Iεf (p : q) from its
closure If (p : q)?

On one hand, we have the following theorem:

Theorem 5 (Total variation continuity). We have the follow-
ing identity TVε(p, q) = |1− 2ε|TV(p, q) (since mε(p, q)−
mε(q, p) = (1− 2ε)(p− q)) that yields limε→0 TVε(p, q) =
limε→1 TVε(p, q) = TV(p, q).

On the other hand, KLε(p : q):=KL(mε(p, q) : mε(q, p))
has been shown to amount to a (univariate) Bregman diver-
gence. That is, KLε(p : q) = BF∗(ε : 1 − ε) for 1D

generator F ∗(η) =
∫
X (p(x) + η(q(x) − p(x))) log(p(x) +

η(q(x) − p(x)))dµ(x). By using the fact that the Bregman
divergence is the tail of a first-order Taylor expansion [9],
we get using Lagrange exact remainder: KLε(p : q) =
1
2 (1 − 2ε)2(F ∗)′′(η), for η ∈ [ε, 1 − ε] (assuming ε ≤ 1

2 ).
However, the KL between p and q may potentially be infinite
so that in general ∀ε 6= 0,KLε(p : q) 6= KL(p : q) (Bregman
divergences are always finite). Using the joint convexity of
the KL divergence, we can show that

KLε(p : q) ≤ KL(p : q) + ε2J(p; q), (12)

where J denotes the Jeffreys divergence.
Let us relate the f -divergence between the 1D η-mixture

and its extremities (closure) as follows:

Theorem 6 (f -divergence inequalities). We have

Iεf (p : q) ≤ (1− ε)If (p : q) + εIf (q : p), (13)

Iεf (p : q) ≤ (1− ε)f
(

ε

1− ε

)
+ εf

(
1− ε
ε

)
. (14)

When If is symmetric (f = f�), Iεf (p : q) ≤ If (p : q). That
is, mixing distributions decrease symmetrized f -divergences.

Proof. Apply the convex-sum inequality on A:={(1 −
ε)p(x), εq(x)} and B:={(1 − ε)q(x), εp(x)}, so that a =
mε(p, q) and b = mε(q, p). First, let a0:=(1 − ε)p(x),
b0:=(1 − ε)q(x), and a1:=εq(x) and b1:=εp(x). We get
Ineq. 13. Second, let a0:=(1 − ε)p(x), b0:=εp(x), and
a1:=εq(x) and b1:=(1 − ε)q(x). We get Ineq. 14. Note
that when ε→ 0, the second right-hand-side inequality yields
f(0) + 0f(∞), similar to If ≤ f(0) + f(∞)

∞ of [6].

Supplementary material at
https://FrankNielsen.github.io/wmixture/
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[29] Carlos Améndola, Mathias Drton, and Bernd Sturm-
fels, “Maximum likelihood estimates for gaussian mix-
tures are transcendental,” in International Conference
on Mathematical Aspects of Computer and Information
Sciences. Springer, 2015, pp. 579–590.

[30] Jun Zhang, “Divergence function, duality, and convex
analysis,” Neural Computation, vol. 16, no. 1, pp. 159–
195, 2004.

[31] Frank Nielsen and Sylvain Boltz, “The Burbea-Rao and
Bhattacharyya centroids,” IEEE Transactions on Infor-
mation Theory, vol. 57, no. 8, pp. 5455–5466, 2011.

[32] Imre Csiszár and Paul C Shields, “Information theory
and statistics: A tutorial,” Foundations and Trends R© in
Communications and Information Theory, vol. 1, no. 4,
pp. 417–528, 2004.

2865


