Quasi-arithmetic centers, quasi-arithmetic mixtures, and the Jensen-Shannon ∇-divergences

Frank Nielsen ${ }^{1[0000-0001-5728-0726]}$
Sony Computer Science Laboratories Inc, Tokyo, Japan.

Abstract

We first explain how the information geometry of Bregman manifolds brings a natural generalization of scalar quasi-arithmetic means that we term quasi-arithmetic centers. We study the invariance and equivariance properties of quasi-arithmetic centers from the viewpoint of the Fenchel-Young canonical divergences. Second, we consider statistical quasi-arithmetic mixtures and define generalizations of the JensenShannon divergence according to geodesics induced by affine connections.

Keywords: Legendre-type function • quasi-arithmetic means • co-monotonicity - information geometry . statistical mixtures . Jensen-Shannon divergence.

1 Introduction

Let $\Delta_{n-1}=\left\{\left(w_{1}, \ldots, w_{n}\right): w_{i} \geq 0, \sum_{i} w_{i}=1\right\} \subset \mathbb{R}^{d}$ denotes the closed ($n-1$)-dimensional standard simplex sitting in \mathbb{R}^{n}, ∂ be the set boundary operator, and $\Delta_{n-1}^{\circ}=\Delta_{n-1} \backslash \partial \Delta_{n-1}$ the open standard simplex. Weighted quasiarithmetic means [12] (QAMs) generalize the ordinary weighted arithmetic mean $A\left(x_{1}, \ldots, x_{n} ; w\right)=\sum_{i} w_{i} x_{i}$ as follows:

Definition 1 (Weighted quasi-arithmetic mean (1930's)). Let $f: I \subset$ $\mathbb{R} \rightarrow \mathbb{R}$ be a strictly monotone and differentiable real-valued function. The weighted quasi-arithmetic mean (QAM) $M_{f}\left(x_{1}, \ldots, x_{n} ; w\right)$ between n scalars $x_{1}, \ldots, x_{n} \in I \subset \mathbb{R}$ with respect to a normalized weight vector $w \in \Delta_{n-1}$, is defined by

$$
M_{f}\left(x_{1}, \ldots, x_{n} ; w\right):=f^{-1}\left(\sum_{i=1}^{n} w_{i} f\left(x_{i}\right)\right) .
$$

Let us write for short $M_{f}\left(x_{1}, \ldots, x_{n}\right):=M_{f}\left(x_{1}, \ldots, x_{n} ; \frac{1}{n}, \ldots, \frac{1}{n}\right)$, and $M_{f, \alpha}(x, y):=M_{f}(x, y ; \alpha, 1-\alpha)$ for $\alpha \in[0,1]$, the weighted bivariate QAM. A QAM satisfies the in-betweenness property:

$$
\min \left\{x_{1}, \ldots, x_{n}\right\} \leq M_{f}\left(x_{1}, \ldots, x_{n} ; w\right) \leq \max \left\{x_{1}, \ldots, x_{n}\right\}
$$

and we have [16] $M_{g}(x, y)=M_{f}(x, y)$ if and only if $g(t)=\lambda f(t)+c$ for $\lambda \in \mathbb{R} \backslash\{0\}$ and $c \in \mathbb{R}$. The power means $M_{p}(x, y):=M_{f_{p}}(x, y)$ are obtained for the following
continuous family of QAM generators indexed by $p \in \mathbb{R}$:

$$
f_{p}(t)=\left\{\begin{array}{l}
\frac{t^{p}-1}{p}, p \in \mathbb{R} \backslash\{0\}, \\
\log (t), p=0
\end{array}, \quad f_{p}^{-1}(t)= \begin{cases}(1+t p)^{\frac{1}{p}}, & p \in \mathbb{R} \backslash\{0\} \\
\exp (t), & p=0\end{cases}\right.
$$

Special cases of the power means are the harmonic mean $\left(H=M_{-1}\right)$, the geometric mean $\left(G=M_{0}\right)$, the arithmetic mean $\left(A=M_{1}\right)$, and the quadratic mean also called root mean square ($Q=M_{2}$). A QAM is said positively homogeneous if and only if $M_{f}(\lambda x, \lambda y)=\lambda M_{f}(x, y)$ for all $\lambda>0$. The power means M_{p} are the only positively homogeneous QAMs [12].

In Section 2, we define a generalization of quasi-arithmetic means called quasi-arithmetic centers (Definition 3) induced by a Legendre-type function. We show that the gradient maps of convex conjugate functions are co-monotone (Proposition 1). We then study their invariance and equivariance properties (Proposition 2). In Section 4, we define quasi-arithmetic mixtures (Definition 4), show their connections to geodesics, and define a generalization of the JensenShannon divergence with respect to affine connections (Definition 5).

2 Quasi-arithmetic centers and information geometry

2.1 Quasi-arithmetic centers

To generalize scalar QAMs to other non-scalar types such as vectors or matrices, we face two difficulties:

1. we need to ensure that the generator $G: \mathbb{X} \rightarrow \mathbb{R}$ admits a global inverse ${ }^{1}$ G^{-1}, and
2. we would like the smooth function G to bear a generalization of monotonicity of univariate functions.

We consider a well-behaved class \mathcal{F} of non-scalar functions G (i.e., vector or matrix functions) which admits global inverse functions G^{-1} belonging to the same class \mathcal{F} : Namely, we consider the gradient maps of Legendre-type functions where Legendre-type functions are defined as follows:

Definition 2 (Legendre type function [24]). (Θ, F) is of Legendre type if the function $F: \Theta \subset \mathbb{X} \rightarrow \mathbb{R}$ is strictly convex and differentiable with $\Theta \neq \emptyset$ an open convex set and

$$
\begin{equation*}
\lim _{\lambda \rightarrow 0} \frac{d}{\mathrm{~d} \lambda} F(\lambda \theta+(1-\lambda) \bar{\theta})=-\infty, \quad \forall \theta \in \Theta, \forall \bar{\theta} \in \partial \Theta \tag{1}
\end{equation*}
$$

Legendre-type functions $F(\Theta)$ admits a convex conjugate $F^{*}(\eta)$ of Legendre type via the Legendre transform (Theorem $1[24]$):

$$
F^{*}(\eta)=\left\langle\nabla F^{-1}(\eta), \eta\right\rangle-F\left(\nabla F^{-1}(\eta)\right)
$$

[^0]where $\langle\theta, \eta\rangle$ denotes the inner product in \mathbb{X} (e.g., Euclidean inner product $\langle\theta, \eta\rangle=\theta^{\top} \eta$ for $\mathbb{X}=\mathbb{R}^{d}$, the Hilbert-Schmidt inner product $\langle A, B\rangle:=\operatorname{tr}\left(A B^{\top}\right)$ where $\operatorname{tr}(\cdot)$ denotes the matrix trace for $\mathbb{X}=\operatorname{Mat}_{d, d}(\mathbb{R})$, etc.), and $\eta \in H$ with H the image of the gradient map $\nabla F: \Theta \rightarrow H$. Moreover, we have $\nabla F^{*}=(\nabla F)^{-1}$ and $\nabla F=\left(\nabla F^{*}\right)^{-1}$, i.e., gradient maps of conjugate functions are reciprocal to each others.

The gradient of a strictly convex function of Legendre type exhibit a generalization of the notion of monotonicity of univariate functions: A function $G: \mathbb{X} \rightarrow \mathbb{R}$ is said strictly increasing co-monotone if

$$
\forall \theta_{1}, \theta_{2} \in \mathbb{X}, \theta_{1} \neq \theta_{2}, \quad\left\langle\theta_{1}-\theta_{2}, G\left(\theta_{1}\right)-G\left(\theta_{2}\right)\right\rangle>0
$$

and strictly decreasing co-monotone if $-G$ is strictly increasing co-monotone.
Proposition 1 (Gradient co-monotonicity [25]). The gradient functions $\nabla F(\theta)$ and $\nabla F^{*}(\eta)$ of the Legendre-type convex conjugates F and F^{*} in \mathcal{F} are strictly increasing co-monotone functions.
Proof. We have to prove that

$$
\begin{align*}
\left\langle\theta_{2}-\theta_{1}, \nabla F\left(\theta_{2}\right)-\nabla F\left(\theta_{1}\right)\right\rangle>0, & \forall \theta_{1} \neq \theta_{2} \in \Theta \tag{2}\\
\left\langle\eta_{2}-\eta_{1}, \nabla F^{*}\left(\eta_{2}\right)-\nabla F^{*}\left(\eta_{1}\right)\right\rangle>0, & \forall \eta_{1} \neq \eta_{2} \in H \tag{3}
\end{align*}
$$

The inequalities follow by interpreting the terms of the left-hand-side of Eq. 2 and Eq. 3 as Jeffreys-symmetrization [17] of the dual Bregman divergences [9] B_{F} and $B_{F^{*}}$:

$$
\begin{aligned}
B_{F}\left(\theta_{1}: \theta_{2}\right) & =F\left(\theta_{1}\right)-F\left(\theta_{2}\right)-\left\langle\theta_{1}-\theta_{2}, \nabla F\left(\theta_{2}\right)\right\rangle \geq 0, \\
B_{F^{*}}\left(\eta_{1}: \eta_{2}\right) & =F^{*}\left(\eta_{1}\right)-F^{*}\left(\eta_{2}\right)-\left\langle\eta_{1}-\eta_{2}, \nabla F^{*}\left(\eta_{2}\right)\right\rangle \geq 0,
\end{aligned}
$$

where the first equality holds if and only if $\theta_{1}=\theta_{2}$ and the second inequality holds iff $\eta_{1}=\eta_{2}$. Indeed, we have the following Jeffreys-symmetrization of the dual Bregman divergences:

$$
\begin{aligned}
B_{F}\left(\theta_{1}: \theta_{2}\right)+B_{F}\left(\theta_{2}: \theta_{1}\right) & =\left\langle\theta_{2}-\theta_{1}, \nabla F\left(\theta_{2}\right)-\nabla F\left(\theta_{1}\right)\right\rangle>0, \quad \forall \theta_{1} \neq \theta_{2} \\
B_{F^{*}}\left(\eta_{1}: \eta_{2}\right)+B_{F^{*}}\left(\eta_{2}: \eta_{1}\right) & =\left\langle\eta_{2}-\eta_{1}, \nabla F^{*}\left(\eta_{2}\right)-\nabla F^{*}\left(\eta_{1}\right)\right\rangle>0, \quad \forall \eta_{1} \neq \eta_{2}
\end{aligned}
$$

Definition 3 (Quasi-arithmetic centers, QACs)). Let $F: \Theta \rightarrow \mathbb{R}$ be a strictly convex and smooth real-valued function of Legendre-type in \mathcal{F}. The weighted quasi-arithmetic average of $\theta_{1}, \ldots, \theta_{n}$ and $w \in \Delta_{n-1}$ is defined by the gradient map ∇F as follows:

$$
\begin{align*}
M_{\nabla F}\left(\theta_{1}, \ldots, \theta_{n} ; w\right) & :=\nabla F^{-1}\left(\sum_{i} w_{i} \nabla F\left(\theta_{i}\right)\right), \tag{4}\\
& =\nabla F^{*}\left(\sum_{i} w_{i} \nabla F\left(\theta_{i}\right)\right), \tag{5}
\end{align*}
$$

where $\nabla F^{*}=(\nabla F)^{-1}$ is the gradient map of the Legendre transform F^{*} of F.

We recover the usual definition of scalar QAMs M_{f} (Definition 1) when $F(t)=\int_{a}^{t} f(u) \mathrm{d} u$ for a strictly increasing or strictly decreasing and continuous function $f: M_{f}=M_{F^{\prime}}\left(\right.$ with $\left.f^{-1}=\left(F^{\prime}\right)^{-1}\right)$. Notice that we only need to consider F to be strictly convex or strictly concave and smooth to define a multivariate QAM since $M_{\nabla F}=M_{-\nabla F}$.

Example 1 (Matrix example). Consider the strictly convex function $[8] F$: $\operatorname{Sym}_{++}(d) \rightarrow \mathbb{R}$ with $F(\theta)=-\log \operatorname{det}(\theta)$, where $\operatorname{det}(\cdot)$ denotes the matrix determinant. Function $F(\theta)$ is strictly convex and differentiable $[8]$ on the domain of d-dimensional symmetric positive-definite matrices $\mathrm{Sym}_{++}(d)$ (open convex cone). We have

$$
\begin{aligned}
F(\theta) & =-\log \operatorname{det}(\theta), \\
\nabla F(\theta) & =-\theta^{-1}=: \eta(\theta), \\
\nabla F^{-1}(\eta) & =-\eta^{-1}=: \theta(\eta) \\
F^{*}(\eta) & =\langle\theta(\eta), \eta\rangle-F(\theta(\eta))=-d-\log \operatorname{det}(-\eta),
\end{aligned}
$$

where the dual parameter η belongs to the d-dimensional negative-definite matrix domain, and the inner matrix product is the Hilbert-Schmidt inner product $\langle A, B\rangle:=\operatorname{tr}\left(A B^{\top}\right)$, where $\operatorname{tr}(\cdot)$ denotes the matrix trace. It follows that

$$
M_{\nabla F}\left(\theta_{1}, \theta_{2}\right)=2\left(\theta_{1}^{-1}+\theta_{2}^{-1}\right)^{-1},
$$

is the matrix harmonic mean [1] generalizing the scalar harmonic mean $H(a, b)=$ $\frac{2 a b}{a+b}$ for $a, b>0$. Other examples of matrix means are reported in [7].

2.2 Quasi-arithmetic barycenters and dual geodesics

A Bregman generator $F: \Theta \rightarrow \mathbb{R}$ induces a dually flat space [4]

$$
\left(\Theta, g(\theta)=\nabla_{\theta}^{2} F(\theta), \nabla, \nabla^{*}\right)
$$

that we call a Bregman manifold (Hessian manifold with a global chart), where ∇ is the flat connection with Christoffel symbols $\Gamma_{i j k}(\theta)=0$ and ∇^{*} is the dual connection with respect to g such that $\Gamma^{* i j k}(\eta)=0$.

In a Bregman manifold, the primal geodesics $\gamma_{\nabla}(P, Q ; t)$ are obtained as line segments in the θ-coordinate system (because the Christoffel symbols of the connection ∇ vanishes in the θ-coordinate system) while the dual geodesics $\gamma_{\nabla *}(P, Q ; t)$ are line segments in the η-coordinate system (because the Christoffel symbols of the dual connection ∇^{*} vanishes in the η-coordinate system). The dual geodesics define interpolation schemes $(P Q)^{\nabla}(t)=\gamma_{\nabla}(P, Q ; t)$ and $(P Q)^{\nabla^{*}}(t)=\gamma_{\nabla^{*}}(P, Q ; t)$ between input points P and Q with $P=\gamma_{\nabla}(P, Q ; 0)=$ $\gamma_{\nabla *}(P, Q ; 0)$ and $Q=\gamma_{\nabla}(P, Q ; 1)=\gamma_{\nabla^{*}}(P, Q ; 1)$ when t ranges in $[0,1]$. We express the coordinates of the interpolated points on γ_{∇} and $\gamma_{\nabla^{*}}$ using quasiarithmetic averages as follows:

Fig. 1. The points on dual geodesics in a dually flat spaces have dual coordinates expressed with quasi-arithmetic averages.

$$
\begin{align*}
(P Q)^{\nabla}(t) & =\gamma_{\nabla}(P, Q ; t)=\left[\begin{array}{l}
M_{\mathrm{id}}(\theta(P), \theta(Q) ; 1-t, t) \\
M_{\nabla F^{*}}(\eta(P), \eta(Q) ; 1-t, t)
\end{array}\right] \tag{6}\\
(P Q)^{\nabla^{*}}(t) & =\gamma_{\nabla^{*}}(P, Q ; t)=\left[\begin{array}{l}
M_{\nabla F}(\theta(P), \theta(Q) ; 1-t, t) \\
M_{\mathrm{id}}(\eta(P), \eta(Q) ; 1-t, t)
\end{array}\right] \tag{7}
\end{align*}
$$

where id denotes the identity mapping. See Figure 1.
Quasi-arithmetic centers were also used by a geodesic bisection algorithm to approximate the circumcenter of the minimum enclosing balls with respect to the canonical divergence in Bregman manifolds in [21], and for defining the Riemannian center of mass between two symmetric positive-definite matrices with respect to the trace metric in [15]. See also [22, 23].

3 Invariance and equivariance properties

A dually flat manifold [4] $\left(M, g, \nabla, \nabla^{*}\right)$ has a canonical divergence [2] $D_{\nabla, \nabla^{*}}$ which can be expressed either as a primal Bregman divergence in the ∇-affine coordinate system θ (using the convex potential function $F(\theta)$) or as a dual Bregman divergence in the ∇^{*}-affine coordinate system η (using the convex conjugate potential function $F^{*}(\eta)$), or as dual Fenchel-Young divergences [18] using the mixed coordinate systems θ and η. The dually flat manifold $\left(M, g, \nabla, \nabla^{*}\right)$ (a particular case of Hessian manifolds [26] which admit a global coordinate system) is thus characterized by $\left(\theta, F(\theta) ; \eta, F^{*}(\eta)\right)$ which we shall denote by $\left(M, g, \nabla, \nabla^{*}\right) \leftarrow \operatorname{DFS}\left(\theta, F(\theta) ; \eta, F^{*}(\eta)\right)\left(\right.$ or in short $\left.\left(M, g, \nabla, \nabla^{*}\right) \leftarrow(\Theta, F(\theta))\right)$. However, the choices of parameters θ and η and potential functions $F(\theta)$ and $F^{*}(\eta)$ are not unique since they can be chosen up to affine reparameterizations and additive affine terms $[4]:\left(M, g, \nabla, \nabla^{*}\right) \leftarrow \operatorname{DFS}\left(\left[\theta, F(\theta) ; \eta, F^{*}(\eta)\right]\right)$ where [.] denotes the equivalence class that has been called purposely the affine Legendre invariance in [14]:

First, consider changing the potential function $F(\theta)$ by adding an affine term: $\bar{F}(\theta)=F(\theta)+\langle c, \theta\rangle+d$. We have $\nabla \bar{F}(\theta)=\nabla F(\theta)+c=\bar{\eta}$. Inverting $\nabla \bar{F}(x)=$ $\nabla F(x)+c=y$, we get $\nabla \bar{F}^{-1}(y)=\nabla F(y-c)$. We check that $B_{F}\left(\theta_{1}: \theta_{2}\right)=$ $B_{\bar{F}}\left(\theta_{1}: \theta_{2}\right)=D_{\nabla, \nabla^{*}}\left(P_{1}: P_{2}\right)$ with $\theta\left(P_{1}\right)=: \theta_{1}$ and $\theta\left(P_{2}\right)=: \theta_{2}$. It is indeed wellknown that Bregman divergences modulo affine terms coincide [5]. For the quasiarithmetic averages $M_{\nabla \bar{F}}$ and $M_{\nabla F}$, we thus obtain the following invariance property:

$$
M_{\nabla \bar{F}}\left(\theta_{1}, \ldots ; \theta_{n} ; w\right)=M_{\nabla F}\left(\theta_{1}, \ldots ; \theta_{n} ; w\right)
$$

Second, consider an affine change of coordinates $\bar{\theta}=A \theta+b$ for $A \in \operatorname{GL}(d)$ and $b \in \mathbb{R}^{d}$, and define the potential function $\bar{F}(\bar{\theta})$ such that $\bar{F}(\bar{\theta})=F(\theta)$. We have $\theta=A^{-1}(\bar{\theta}-b)$ and $\bar{F}(x)=F\left(A^{-1}(x-b)\right)$. It follows that

$$
\nabla \bar{F}(x)=\left(A^{-1}\right)^{\top} \nabla F\left(A^{-1}(x-b)\right),
$$

and we check that $B_{\bar{F}\left(\overline{\theta_{1}}: \overline{\theta_{2}}\right)}=B_{F}\left(\theta_{1}: \theta_{2}\right)$:

$$
\begin{aligned}
B_{\bar{F}\left(\bar{F}\left(\overline{\theta_{1}}: \overline{\theta_{2}}\right)\right.} & =\bar{F}\left(\overline{\theta_{1}}\right)-\bar{F}\left(\overline{\theta_{2}}\right)-\left\langle\overline{\theta_{1}}-\overline{\theta_{2}}, \nabla \bar{F}\left(\overline{\theta_{2}}\right)\right\rangle, \\
& =F\left(\theta_{1}\right)-F\left(\theta_{2}\right)-\left(A\left(\theta_{1}-\theta_{2}\right)\right)^{\top}\left(A^{-1}\right)^{\top} \nabla F\left(\theta_{2}\right), \\
& =F\left(\theta_{1}\right)-F\left(\theta_{2}\right)-\left(\theta_{1}-\theta_{2}\right)^{\top} \underbrace{A^{\top}\left(A^{-1}\right)^{\top}}_{\left(A^{-1} A\right)^{\top}=I} \nabla F\left(\theta_{2}\right)=B_{F}\left(\theta_{1}: \theta_{2}\right) .
\end{aligned}
$$

This highlights the invariance that $D_{\nabla, \nabla^{*}}\left(P_{1}: P_{2}\right)=B_{F}\left(\theta_{1}: \theta_{2}\right)=B_{\bar{F}\left(\bar{\theta}_{1}: \bar{\theta}_{2}\right)}$, i.e., the canonical divergence does not change under a reparameterization of the ∇-affine coordinate system. For the induced quasi-arithmetic averages $M_{\nabla \bar{F}}$ and $M_{\nabla F}$, we have $\nabla \bar{F}(x)=\left(A^{-1}\right)^{\top} \nabla F\left(A^{-1}(x-b)\right)=y$, we calculate

$$
x=\nabla \bar{F}(x)^{-1}(y)=A \nabla \bar{F}^{-1}\left(\left(\left(A^{-1}\right)^{\top}\right)^{-1} y\right)+b
$$

and we have

$$
\begin{aligned}
M_{\nabla \bar{F}}\left(\bar{\theta}_{1}, \ldots, \bar{\theta}_{n} ; w\right) & :=\nabla \bar{F}^{-1}\left(\sum_{i} w_{i} \nabla \bar{F}\left(\bar{\theta}_{i}\right)\right) \\
& =(\nabla \bar{F})^{-1}\left(\left(A^{-1}\right)^{\top} \sum_{i} w_{i} \nabla F\left(\theta_{i}\right)\right) \\
& =A \nabla F^{-1}(\underbrace{\left(\left(A^{-1}\right)^{\top}\right)^{-1}\left(A^{-1}\right)^{\top}}_{=I} \sum_{i} w_{i} \nabla F\left(\theta_{i}\right))+b \\
M_{\nabla \bar{F}}\left(\bar{\theta}_{1}, \ldots, \bar{\theta}_{n} ; w\right) & =A M_{\nabla F}\left(\theta_{1}, \ldots, \theta_{n} ; w\right)+b
\end{aligned}
$$

More generally, we may define $\bar{F}(\bar{\theta})=F(A \theta+b)+\langle c, \theta\rangle+d$ and get via Legendre transformation $\bar{F}^{*}(\bar{\eta})=F^{*}\left(A^{*} \eta+b^{*}\right)+\left\langle c^{*}, \eta\right\rangle+d^{*}$ (with A^{*}, b^{*}, c^{*} and d^{*} expressed using A, b, c and d since these parameters are linked by the Legendre transformation).

Third, the canonical divergences should be considered relative divergences (and not absolute divergences), and defined according to a prescribed arbitrary "unit" $\lambda>0$. Thus we can scale the canonical divergence by $\lambda>0$, i.e., $D_{\lambda, \nabla, \nabla^{*}}:=\lambda D_{\nabla, \nabla^{*}}$. We have $D_{\lambda, \nabla, \nabla^{*}}\left(P_{1}: P_{2}\right)=\lambda B_{F}\left(\theta_{1}: \theta_{2}\right)=\lambda B_{F^{*}}\left(\eta_{2}: \eta_{1}\right)$, and $\lambda B_{F}\left(\theta_{1}: \theta_{2}\right)=B_{\lambda F}\left(\theta_{1}: \theta_{2}\right)$ (and $\left.\nabla \lambda F=\lambda \nabla F\right)$. We check the scale invariance of quasi-arithmetic averages: $M_{\lambda \nabla F}=M_{\nabla F}$.

Proposition 2 (Invariance and equivariance of QACs). Let $F(\theta)$ be a function of Legendre type. Then $\bar{F}(\bar{\theta}):=\lambda(F(A \theta+b)+\langle c, \theta\rangle+d)$ for $A \in \operatorname{GL}(d)$, $b, c \in \mathbb{R}^{d}, d \in \mathbb{R}^{d}$ and $\lambda \in \mathbb{R}_{>0}$ is a Legendre-type function, and we have

$$
M_{\nabla \bar{F}}=A M_{\nabla F}+b
$$

This proposition generalizes the invariance property of scalar QAMs, and untangles the role of scale $\lambda>0$ from the other invariance roles brought by the Legendre transformation.

Consider the Mahalanobis divergence Δ^{2} (i.e., the squared Mahalanobis distance Δ) as a Bregman divergence obtained for the quadratic form generator $F_{Q}(\theta)=\frac{1}{2} \theta^{\top} Q \theta+c \theta+\kappa$ for a symmetric positive-definite $d \times d$ matrix Q, $c \in \mathbb{R}^{d}$ and $\kappa \in \mathbb{R}$. We have:

$$
\Delta^{2}\left(\theta_{1}, \theta_{2}\right)=B_{F_{Q}}\left(\theta_{1}: \theta_{2}\right)=\frac{1}{2}\left(\theta_{2}-\theta_{1}\right)^{\top} Q\left(\theta_{2}-\theta_{1}\right)
$$

When $Q=I$, the identity matrix, the Mahalanobis divergence coincides with the Euclidean divergence ${ }^{2}$ (i.e., the squared Euclidean distance). The Legendre convex conjugate is

$$
F^{*}(\eta)=\frac{1}{2} \eta^{\top} Q^{-1} \eta=F_{Q^{-1}}(\eta)
$$

and we have $\eta=\nabla F_{Q}(\theta)=Q \theta$ and $\theta=\nabla F_{Q}^{*}(\eta)=Q^{-1} \eta$. Thus we get the following dual quasi-arithmetic averages:

$$
\begin{aligned}
& M_{\nabla F_{Q}}\left(\theta_{1}, \ldots, \theta_{n} ; w\right)=Q^{-1}\left(\sum_{i=1}^{n} w_{i} Q \theta_{i}\right)=\sum_{i=1}^{n} w_{i} \theta_{i}=M_{\mathrm{id}}\left(\theta_{1}, \ldots, \theta_{n} ; w\right), \\
& M_{\nabla F_{Q}^{*}}\left(\eta_{1}, \ldots, \eta_{n} ; w\right)=Q\left(\sum_{i=1}^{n} w_{i} Q^{-1} \eta_{i}\right)=M_{\mathrm{id}}\left(\eta_{1}, \ldots, \eta_{n} ; w\right) .
\end{aligned}
$$

The dual quasi-arithmetic centers $M_{\nabla F_{Q}}$ and $M_{\nabla F_{Q}^{*}}$ induced by a Mahalanobis Bregman generator F_{Q} coincide since $M_{\nabla F_{Q}} \stackrel{Q}{=} M_{\nabla F_{Q}^{*}}=M_{\mathrm{id}}$. This means geometrically that the left-sided and right-sided centroids of the underlying canonical divergences match. The average $M_{\nabla F_{Q}}\left(\theta_{1}, \ldots, \theta_{n} ; w\right)$ expresses the centroid $C=\bar{C}_{R}=\bar{C}_{L}$ in the θ-coordinate system $(\theta(C)=\underline{\theta})$ and the average $M_{\nabla F_{Q}^{*}}\left(\eta_{1}, \ldots, \eta_{n} ; w\right)$ expresses the same centroid in the η-coordinate system $(\eta(C)=\underline{\eta})$. In that case of self-dual flat Euclidean geometry, there is an affine

[^1]transformation relating the θ - and η-coordinate systems: $\eta=Q \theta$ and $\theta=Q^{-1} \eta$. As we shall see this is because the underlying geometry is self-dual Euclidean flat space $\left(M, g_{\text {Euclidean }}, \nabla_{\text {Euclidean }}, \nabla_{\text {Euclidean }}^{*}=\nabla_{\text {Euclidean }}\right)$ and that both dual connections coincide with the Euclidean connection (i.e., the Levi-Civita connection of the Euclidean metric). In this particular case, the dual coordinate systems are just related by affine transformations.

4 Quasi-arithmetic mixtures and Jensen-Shannon-type divergences

Consider a quasi-arithmetic mean M_{f} and n probability distributions P_{1}, \ldots, P_{n} all dominated by a measure μ, and denote by $p_{1}=\frac{\mathrm{d} P_{1}}{\mathrm{~d} \mu}, \ldots, p_{n}=\frac{\mathrm{d} P_{n}}{\mathrm{~d} \mu}$ their Radon-Nikodym derivatives. Let us define statistical M_{f}-mixtures of p_{1}, \ldots, p_{n} :

Definition 4. The M_{f}-mixture of n densities p_{1}, \ldots, p_{n} weighted by $w \in \Delta_{n}^{\circ}$ is defined by

$$
\left(p_{1}, \ldots, p_{n} ; w\right)^{M_{f}}(x):=\frac{M_{f}\left(p_{1}(x), \ldots, p_{n}(x) ; w\right)}{\int M_{f}\left(p_{1}(x), \ldots, p_{n}(x) ; w\right) \mathrm{d} \mu(x)}
$$

The quasi-arithmetic mixture (QAMIX) $\left(p_{1}, \ldots, p_{n} ; w\right)^{M_{f}}$ generalizes the ordinary statistical mixture $\sum_{i=1}^{d} w_{i} p_{i}(x)$ when $f(t)=t$ and $M_{f}=A$ is the arithmetic mean. A statistical M_{f}-mixture can be interpreted as the $M_{f^{-}}$ integration of its weighted component densities, the densities p_{i}. The power mixtures $\left(p_{1}, \ldots, p_{n} ; w\right)^{M_{p}}(x)$ (including the ordinary and geometric mixtures) are called α-mixtures in [3] with $\alpha(p)=1-2 p$ (or equivalently $p=\frac{1-\alpha}{2}$). A nice characterization of the α-mixtures is that these mixtures are the density centroids of the weighted mixture components with respect to the α-divergences [3] (proven by calculus of variation):

$$
\left(p_{1}, \ldots, p_{n} ; w\right)^{M_{\alpha}}=\arg \min _{p} \sum_{i} w_{i} D_{\alpha}\left(p_{i}, p\right)
$$

where D_{α} denotes the α-divergences [4, 20]. See also the entropic means defined according to f-divergences [6]. M_{f}-mixtures can also been used to define a generalization of the Jensen-Shannon divergence [17] between densities p and q as follows:

$$
\begin{equation*}
D_{\mathrm{JS}}^{M_{f}}(p, q):=\frac{1}{2}\left(D_{\mathrm{KL}}\left(p:(p q)^{M_{f}}\right)+D_{\mathrm{KL}}\left(q:(p q)^{M_{f}}\right)\right) \geq 0 \tag{8}
\end{equation*}
$$

where $D_{\mathrm{KL}}(p: q)=\int p(x) \log \frac{p(x)}{q(x)} \mathrm{d} \mu(x)$ is the Kullback-Leibler divergence, and $(p q)^{M_{f}}:=\left(p, q ; \frac{1}{2}, \frac{1}{2}\right)^{M_{f}}$. The ordinary JSD is recovered when $f(t)=t$ and $M_{f}=A:$

$$
D_{\mathrm{JS}}(p, q)=\frac{1}{2}\left(D_{\mathrm{KL}}\left(p: \frac{p+q}{2}\right)+D_{\mathrm{KL}}\left(q: \frac{p+q}{2}\right)\right) .
$$

In general, we may consider quasi-arithmetic paths between densities on the space \mathcal{P} of probability density functions with a common support all dominated by a reference measure. On \mathcal{P}, we can build a parametric statistical model called a M_{f}-mixture family of order n as follows:

$$
\mathcal{F}_{p_{0}, p_{1}, \ldots, p_{n}}^{M_{f}}:=\left\{\left(p_{0}, p_{1}, \ldots, p_{n} ;(\theta, 1)\right)^{M_{f}}: \theta \in \Delta_{n}^{\circ}\right\}
$$

In particular, power q-paths have been investigated in [13] with applications in annealing importance sampling and other Monte Carlo methods.

To conclude, let us give a geometric definition of a generalization of the Jensen-Shannon divergence on \mathcal{P} according to an arbitrary affine connection [4, 27] ∇ :

Definition 5 (Affine connection-based ∇-Jensen-Shannon divergence). Let ∇ be an affine connection on the space of densities \mathcal{P}, and $\gamma_{\nabla}(p, q ; t)$ the geodesic linking density $p=\gamma_{\nabla}(p, q ; 0)$ to density $q=\gamma_{\nabla}(p, q ; 1)$. Then the ∇ -Jensen-Shannon divergence is defined by:

$$
\begin{equation*}
D_{\nabla}^{\mathrm{JS}}(p, q):=\frac{1}{2}\left(D_{\mathrm{KL}}\left(p: \gamma_{\nabla}\left(p, q ; \frac{1}{2}\right)\right)+D_{\mathrm{KL}}\left(q: \gamma_{\nabla}\left(p, q ; \frac{1}{2}\right)\right)\right) . \tag{9}
\end{equation*}
$$

When $\nabla=\nabla^{m}$ is chosen as the mixture connection [4], we end up with the ordinary Jensen-Shannon divergence since $\gamma_{\nabla^{m}}\left(p, q ; \frac{1}{2}\right)=\frac{p+q}{2}$. When $\nabla=\nabla^{e}$, the exponential connection, we get the geometric Jensen-Shannon divergence [17] since $\gamma_{\nabla^{e}}\left(p, q ; \frac{1}{2}\right)=(p q)^{G}$ is a statistical geometric mixture. We may consider the α-connections [4] ∇^{α} of parametric or non-parametric statistical models, and skew the geometric Jensen-Shannon divergence to define the β-skewed ∇^{α}-JSD:

$$
\begin{equation*}
D_{\nabla^{\alpha}, \beta}^{\mathrm{JS}}(p, q)=\beta D_{\mathrm{KL}}\left(p: \gamma_{\nabla^{\alpha}}(p, q ; \beta)\right)+(1-\beta) D_{\mathrm{KL}}\left(q: \gamma_{\nabla^{\alpha}}(p, q ; \beta)\right) \tag{10}
\end{equation*}
$$

A longer technical report of this work is available [19].

References

1. Alić, M., Mond, B., Pečarić, J., Volenec, V.: The arithmetic-geometric-harmonicmean and related matrix inequalities. Linear Algebra and its Applications 264, 55-62 (1997)
2. Amari, S.i.: Differential-geometrical methods in statistics. Lecture Notes on Statistics 28, 1 (1985)
3. Amari, S.i.: Integration of stochastic models by minimizing α-divergence. Neural computation 19(10), 2780-2796 (2007)
4. Amari, S.i.: Information Geometry and Its Applications. Applied Mathematical Sciences, Springer Japan (2016)
5. Banerjee, A., Merugu, S., Dhillon, I.S., Ghosh, J., Lafferty, J.: Clustering with Bregman divergences. Journal of machine learning research 6(10) (2005)
6. Ben-Tal, A., Charnes, A., Teboulle, M.: Entropic means. Journal of Mathematical Analysis and Applications 139(2), 537-551 (1989)
7. Bhatia, R., Gaubert, S., Jain, T.: Matrix versions of the Hellinger distance. Letters in Mathematical Physics 109(8), 1777-1804 (2019)
8. Boyd, S., Boyd, S.P., Vandenberghe, L.: Convex optimization. Cambridge university press (2004)
9. Bregman, L.M.: The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming. USSR computational mathematics and mathematical physics 7 (3), 200-217 (1967)
10. Clarke, F.: On the inverse function theorem. Pacific Journal of Mathematics 64(1), 97-102 (1976)
11. Dontchev, A.L., Rockafellar, R.T., Rockafellar, R.T.: Implicit functions and solution mappings: A view from variational analysis, vol. 11. Springer (2009)
12. Hardy, G.H., Littlewood, J.E., Pólya, G., Pólya, G.: Inequalities. Cambridge university press (1952)
13. Masrani, V., Brekelmans, R., Bui, T., Nielsen, F., Galstyan, A., Ver Steeg, G., Wood, F.: q-paths: Generalizing the geometric annealing path using power means. In: Uncertainty in Artificial Intelligence. pp. 1938-1947. PMLR (2021)
14. Nakajima, N., Ohmoto, T.: The dually flat structure for singular models. Information Geometry 4(1), 31-64 (2021)
15. Nakamura, Y.: Algorithms associated with arithmetic, geometric and harmonic means and integrable systems. Journal of computational and applied mathematics 131(1-2), 161-174 (2001)
16. Niculescu, C., Persson, L.E.: Convex functions and their applications, vol. 23. Springer (2006)
17. Nielsen, F.: On the Jensen-Shannon symmetrization of distances relying on abstract means. Entropy 21(5), 485 (2019)
18. Nielsen, F.: Statistical Divergences between Densities of Truncated Exponential Families with Nested Supports: Duo Bregman and Duo Jensen Divergences. Entropy 24(3), 421 (2022)
19. Nielsen, F.: Beyond scalar quasi-arithmetic means: Quasi-arithmetic averages and quasi-arithmetic mixtures in information geometry (2023)
20. Nielsen, F., Nock, R., Amari, S.i.: On clustering histograms with k-means by using mixed α-divergences. Entropy 16(6), 3273-3301 (2014)
21. Nock, R., Nielsen, F.: Fitting the smallest enclosing Bregman ball. In: European Conference on Machine Learning. pp. 649-656. Springer (2005)
22. Ohara, A.: Geodesics for dual connections and means on symmetric cones. Integral Equations and Operator Theory 50, 537-548 (2004)
23. Pálfia, M.: Classification of affine matrix means. arXiv preprint arXiv:1208.5603 (2012)
24. Rockafellar, R.T.: Conjugates and Legendre transforms of convex functions. Canadian Journal of Mathematics 19, 200-205 (1967)
25. Rockafellar, R.T.: Convex analysis, vol. 11. Princeton university press (1997)
26. Shima, H., Yagi, K.: Geometry of Hessian manifolds. Differential geometry and its applications 7(3), 277-290 (1997)
27. Zhang, J.: Nonparametric information geometry: From divergence function to referential-representational biduality on statistical manifolds. Entropy 15(12), 5384-5418 (2013)

[^0]: ${ }^{1}$ The inverse function theorem $[10,11]$ in multivariable calculus states only the local existence of an inverse continuously differentiable function G^{-1} for a multivariate function G provided that the Jacobian matrix of G is not singular

[^1]: ${ }^{2}$ The squared Euclidean/Mahalanobis divergence are not metric distances since they fail the triangle inequality.

