Quasi-arithmetic centers, quasi-arithmetic mixtures, and the Jensen-Shannon ∇ -divergences

Frank Nielsen^{1[0000-0001-5728-0726]}

Sony Computer Science Laboratories Inc, Tokyo, Japan.

Abstract. We first explain how the information geometry of Bregman manifolds brings a natural generalization of scalar quasi-arithmetic means that we term quasi-arithmetic centers. We study the invariance and equivariance properties of quasi-arithmetic centers from the viewpoint of the Fenchel-Young canonical divergences. Second, we consider statistical quasi-arithmetic mixtures and define generalizations of the Jensen-Shannon divergence according to geodesics induced by affine connections.

Keywords: Legendre-type function · quasi-arithmetic means · co-monotonicity · information geometry · statistical mixtures · Jensen-Shannon divergence.

1 Introduction

Let $\Delta_{n-1} = \{(w_1, \ldots, w_n) : w_i \geq 0, \sum_i w_i = 1\} \subset \mathbb{R}^d$ denotes the closed (n-1)-dimensional standard simplex sitting in \mathbb{R}^n , ∂ be the set boundary operator, and $\Delta_{n-1}^{\circ} = \Delta_{n-1} \setminus \partial \Delta_{n-1}$ the open standard simplex. Weighted quasi-arithmetic means [12] (QAMs) generalize the ordinary weighted arithmetic mean $A(x_1, \ldots, x_n; w) = \sum_i w_i x_i$ as follows:

Definition 1 (Weighted quasi-arithmetic mean (1930's)). Let $f : I \subset \mathbb{R} \to \mathbb{R}$ be a strictly monotone and differentiable real-valued function. The weighted quasi-arithmetic mean (QAM) $M_f(x_1, \ldots, x_n; w)$ between n scalars $x_1, \ldots, x_n \in I \subset \mathbb{R}$ with respect to a normalized weight vector $w \in \Delta_{n-1}$, is defined by

$$M_f(x_1, \dots, x_n; w) := f^{-1}\left(\sum_{i=1}^n w_i f(x_i)\right).$$

Let us write for short $M_f(x_1, \ldots, x_n) := M_f(x_1, \ldots, x_n; \frac{1}{n}, \ldots, \frac{1}{n})$, and $M_{f,\alpha}(x,y) := M_f(x,y; \alpha, 1-\alpha)$ for $\alpha \in [0,1]$, the weighted bivariate QAM. A QAM satisfies the in-betweenness property:

$$\min\{x_1,\ldots,x_n\} \le M_f(x_1,\ldots,x_n;w) \le \max\{x_1,\ldots,x_n\},\$$

and we have [16] $M_g(x, y) = M_f(x, y)$ if and only if $g(t) = \lambda f(t) + c$ for $\lambda \in \mathbb{R} \setminus \{0\}$ and $c \in \mathbb{R}$. The power means $M_p(x, y) := M_{f_p}(x, y)$ are obtained for the following continuous family of QAM generators indexed by $p \in \mathbb{R}$:

$$f_p(t) = \begin{cases} \frac{t^p - 1}{p}, \ p \in \mathbb{R} \setminus \{0\}, \\ \log(t), \ p = 0. \end{cases}, \quad f_p^{-1}(t) = \begin{cases} (1 + tp)^{\frac{1}{p}}, \ p \in \mathbb{R} \setminus \{0\}, \\ \exp(t), \ p = 0. \end{cases},$$

Special cases of the power means are the harmonic mean $(H = M_{-1})$, the geometric mean $(G = M_0)$, the arithmetic mean $(A = M_1)$, and the quadratic mean also called root mean square $(Q = M_2)$. A QAM is said positively homogeneous if and only if $M_f(\lambda x, \lambda y) = \lambda M_f(x, y)$ for all $\lambda > 0$. The power means M_p are the only positively homogeneous QAMs [12].

In Section 2, we define a generalization of quasi-arithmetic means called quasi-arithmetic centers (Definition 3) induced by a Legendre-type function. We show that the gradient maps of convex conjugate functions are co-monotone (Proposition 1). We then study their invariance and equivariance properties (Proposition 2). In Section 4, we define quasi-arithmetic mixtures (Definition 4), show their connections to geodesics, and define a generalization of the Jensen-Shannon divergence with respect to affine connections (Definition 5).

2 Quasi-arithmetic centers and information geometry

2.1 Quasi-arithmetic centers

To generalize scalar QAMs to other non-scalar types such as vectors or matrices, we face two difficulties:

- 1. we need to ensure that the generator $G: \mathbb{X} \to \mathbb{R}$ admits a global inverse¹ G^{-1} , and
- 2. we would like the smooth function G to bear a generalization of monotonicity of univariate functions.

We consider a well-behaved class \mathcal{F} of non-scalar functions G (i.e., vector or matrix functions) which admits global inverse functions G^{-1} belonging to the same class \mathcal{F} : Namely, we consider the gradient maps of Legendre-type functions where Legendre-type functions are defined as follows:

Definition 2 (Legendre type function [24]). (Θ, F) is of Legendre type if the function $F : \Theta \subset \mathbb{X} \to \mathbb{R}$ is strictly convex and differentiable with $\Theta \neq \emptyset$ an open convex set and

$$\lim_{\lambda \to 0} \frac{d}{d\lambda} F(\lambda \theta + (1 - \lambda)\bar{\theta}) = -\infty, \quad \forall \theta \in \Theta, \forall \bar{\theta} \in \partial \Theta.$$
(1)

Legendre-type functions $F(\Theta)$ admits a convex conjugate $F^*(\eta)$ of Legendre type via the Legendre transform (Theorem 1 [24]):

$$F^*(\eta) = \left\langle \nabla F^{-1}(\eta), \eta \right\rangle - F(\nabla F^{-1}(\eta)),$$

¹ The inverse function theorem [10, 11] in multivariable calculus states only the local existence of an inverse continuously differentiable function G^{-1} for a multivariate function G provided that the Jacobian matrix of G is not singular

3

where $\langle \theta, \eta \rangle$ denotes the inner product in X (e.g., Euclidean inner product $\langle \theta, \eta \rangle = \theta^{\top} \eta$ for $\mathbb{X} = \mathbb{R}^d$, the Hilbert-Schmidt inner product $\langle A, B \rangle := \operatorname{tr}(AB^{\top})$ where $\operatorname{tr}(\cdot)$ denotes the matrix trace for $\mathbb{X} = \operatorname{Mat}_{d,d}(\mathbb{R})$, etc.), and $\eta \in H$ with H the image of the gradient map $\nabla F : \Theta \to H$. Moreover, we have $\nabla F^* = (\nabla F)^{-1}$ and $\nabla F = (\nabla F^*)^{-1}$, i.e., gradient maps of conjugate functions are reciprocal to each others.

The gradient of a strictly convex function of Legendre type exhibit a generalization of the notion of monotonicity of univariate functions: A function $G: \mathbb{X} \to \mathbb{R}$ is said strictly increasing co-monotone if

$$\forall \theta_1, \theta_2 \in \mathbb{X}, \theta_1 \neq \theta_2, \quad \langle \theta_1 - \theta_2, G(\theta_1) - G(\theta_2) \rangle > 0.$$

and strictly decreasing co-monotone if -G is strictly increasing co-monotone.

Proposition 1 (Gradient co-monotonicity [25]). The gradient functions $\nabla F(\theta)$ and $\nabla F^*(\eta)$ of the Legendre-type convex conjugates F and F^* in \mathcal{F} are strictly increasing co-monotone functions.

Proof. We have to prove that

$$\langle \theta_2 - \theta_1, \nabla F(\theta_2) - \nabla F(\theta_1) \rangle > 0, \quad \forall \theta_1 \neq \theta_2 \in \Theta$$
 (2)

$$\langle \eta_2 - \eta_1, \nabla F^*(\eta_2) - \nabla F^*(\eta_1) \rangle > 0, \quad \forall \eta_1 \neq \eta_2 \in H$$
(3)

The inequalities follow by interpreting the terms of the left-hand-side of Eq. 2 and Eq. 3 as Jeffreys-symmetrization [17] of the dual Bregman divergences [9] B_F and B_{F^*} :

$$B_F(\theta_1:\theta_2) = F(\theta_1) - F(\theta_2) - \langle \theta_1 - \theta_2, \nabla F(\theta_2) \rangle \ge 0,$$

$$B_{F^*}(\eta_1:\eta_2) = F^*(\eta_1) - F^*(\eta_2) - \langle \eta_1 - \eta_2, \nabla F^*(\eta_2) \rangle \ge 0,$$

where the first equality holds if and only if $\theta_1 = \theta_2$ and the second inequality holds iff $\eta_1 = \eta_2$. Indeed, we have the following Jeffreys-symmetrization of the dual Bregman divergences:

$$B_F(\theta_1:\theta_2) + B_F(\theta_2:\theta_1) = \langle \theta_2 - \theta_1, \nabla F(\theta_2) - \nabla F(\theta_1) \rangle > 0, \quad \forall \theta_1 \neq \theta_2$$

$$B_{F^*}(\eta_1:\eta_2) + B_{F^*}(\eta_2:\eta_1) = \langle \eta_2 - \eta_1, \nabla F^*(\eta_2) - \nabla F^*(\eta_1) \rangle > 0, \quad \forall \eta_1 \neq \eta_2$$

Definition 3 (Quasi-arithmetic centers, QACs)). Let $F : \Theta \to \mathbb{R}$ be a strictly convex and smooth real-valued function of Legendre-type in \mathcal{F} . The weighted quasi-arithmetic average of $\theta_1, \ldots, \theta_n$ and $w \in \Delta_{n-1}$ is defined by the gradient map ∇F as follows:

$$M_{\nabla F}(\theta_1, \dots, \theta_n; w) := \nabla F^{-1}\left(\sum_i w_i \nabla F(\theta_i)\right),\tag{4}$$

$$= \nabla F^*\left(\sum_i w_i \nabla F(\theta_i)\right),\tag{5}$$

where $\nabla F^* = (\nabla F)^{-1}$ is the gradient map of the Legendre transform F^* of F.

4 Frank Nielsen

We recover the usual definition of scalar QAMs M_f (Definition 1) when $F(t) = \int_a^t f(u) du$ for a strictly increasing or strictly decreasing and continuous function $f: M_f = M_{F'}$ (with $f^{-1} = (F')^{-1}$). Notice that we only need to consider F to be strictly convex or strictly concave and smooth to define a multivariate QAM since $M_{\nabla F} = M_{-\nabla F}$.

Example 1 (Matrix example). Consider the strictly convex function [8] F: Sym₊₊(d) $\rightarrow \mathbb{R}$ with $F(\theta) = -\log \det(\theta)$, where det(\cdot) denotes the matrix determinant. Function $F(\theta)$ is strictly convex and differentiable [8] on the domain of *d*-dimensional symmetric positive-definite matrices Sym₊₊(d) (open convex cone). We have

$$F(\theta) = -\log \det(\theta),$$

$$\nabla F(\theta) = -\theta^{-1} =: \eta(\theta),$$

$$\nabla F^{-1}(\eta) = -\eta^{-1} =: \theta(\eta)$$

$$F^*(\eta) = \langle \theta(\eta), \eta \rangle - F(\theta(\eta)) = -d - \log \det(-\eta),$$

where the dual parameter η belongs to the *d*-dimensional negative-definite matrix domain, and the inner matrix product is the Hilbert-Schmidt inner product $\langle A, B \rangle := \operatorname{tr}(AB^{\top})$, where $\operatorname{tr}(\cdot)$ denotes the matrix trace. It follows that

$$M_{\nabla F}(\theta_1, \theta_2) = 2(\theta_1^{-1} + \theta_2^{-1})^{-1},$$

is the matrix harmonic mean [1] generalizing the scalar harmonic mean $H(a, b) = \frac{2ab}{a+b}$ for a, b > 0. Other examples of matrix means are reported in [7].

2.2 Quasi-arithmetic barycenters and dual geodesics

A Bregman generator $F: \Theta \to \mathbb{R}$ induces a dually flat space [4]

$$(\Theta, g(\theta) = \nabla^2_{\theta} F(\theta), \nabla, \nabla^*)$$

that we call a Bregman manifold (Hessian manifold with a global chart), where ∇ is the flat connection with Christoffel symbols $\Gamma_{ijk}(\theta) = 0$ and ∇^* is the dual connection with respect to g such that $\Gamma^{*ijk}(\eta) = 0$.

In a Bregman manifold, the primal geodesics $\gamma_{\nabla}(P,Q;t)$ are obtained as line segments in the θ -coordinate system (because the Christoffel symbols of the connection ∇ vanishes in the θ -coordinate system) while the dual geodesics $\gamma_{\nabla^*}(P,Q;t)$ are line segments in the η -coordinate system (because the Christoffel symbols of the dual connection ∇^* vanishes in the η -coordinate system). The dual geodesics define interpolation schemes $(PQ)^{\nabla}(t) = \gamma_{\nabla}(P,Q;t)$ and $(PQ)^{\nabla^*}(t) = \gamma_{\nabla^*}(P,Q;t)$ between input points P and Q with $P = \gamma_{\nabla}(P,Q;0) =$ $\gamma_{\nabla^*}(P,Q;0)$ and $Q = \gamma_{\nabla}(P,Q;1) = \gamma_{\nabla^*}(P,Q;1)$ when t ranges in [0,1]. We express the coordinates of the interpolated points on γ_{∇} and γ_{∇^*} using quasiarithmetic averages as follows:

Jensen-Shannon ∇ -divergences 5

Fig. 1. The points on dual geodesics in a dually flat spaces have dual coordinates expressed with quasi-arithmetic averages.

$$(PQ)^{\nabla}(t) = \gamma_{\nabla}(P,Q;t) = \begin{bmatrix} M_{\mathrm{id}}(\theta(P),\theta(Q);1-t,t)\\ M_{\nabla F^*}(\eta(P),\eta(Q);1-t,t) \end{bmatrix},\tag{6}$$

$$(PQ)^{\nabla^{*}}(t) = \gamma_{\nabla^{*}}(P,Q;t) = \begin{bmatrix} M_{\nabla F}(\theta(P),\theta(Q);1-t,t) \\ M_{\rm id}(\eta(P),\eta(Q);1-t,t) \end{bmatrix},$$
(7)

where id denotes the identity mapping. See Figure 1.

Quasi-arithmetic centers were also used by a geodesic bisection algorithm to approximate the circumcenter of the minimum enclosing balls with respect to the canonical divergence in Bregman manifolds in [21], and for defining the Riemannian center of mass between two symmetric positive-definite matrices with respect to the trace metric in [15]. See also [22, 23].

3 Invariance and equivariance properties

A dually flat manifold [4] (M, g, ∇, ∇^*) has a canonical divergence [2] D_{∇, ∇^*} which can be expressed either as a primal Bregman divergence in the ∇ -affine coordinate system θ (using the convex potential function $F(\theta)$) or as a dual Bregman divergence in the ∇^* -affine coordinate system η (using the convex conjugate potential function $F^*(\eta)$), or as dual Fenchel-Young divergences [18] using the mixed coordinate systems θ and η . The dually flat manifold (M, g, ∇, ∇^*) (a particular case of Hessian manifolds [26] which admit a global coordinate system) is thus characterized by $(\theta, F(\theta); \eta, F^*(\eta))$ which we shall denote by $(M, g, \nabla, \nabla^*) \leftarrow \text{DFS}(\theta, F(\theta); \eta, F^*(\eta))$ (or in short $(M, g, \nabla, \nabla^*) \leftarrow (\Theta, F(\theta))$). However, the choices of parameters θ and η and potential functions $F(\theta)$ and $F^*(\eta)$ are not unique since they can be chosen up to affine reparameterizations and additive affine terms [4]: $(M, g, \nabla, \nabla^*) \leftarrow \text{DFS}([\theta, F(\theta); \eta, F^*(\eta)])$ where [·] denotes the equivalence class that has been called purposely the affine Legendre invariance in [14]:

6 Frank Nielsen

First, consider changing the potential function $F(\theta)$ by adding an affine term: $\bar{F}(\theta) = F(\theta) + \langle c, \theta \rangle + d$. We have $\nabla \bar{F}(\theta) = \nabla F(\theta) + c = \bar{\eta}$. Inverting $\nabla \bar{F}(x) = \nabla F(x) + c = y$, we get $\nabla \bar{F}^{-1}(y) = \nabla F(y - c)$. We check that $B_F(\theta_1 : \theta_2) = B_{\bar{F}}(\theta_1 : \theta_2) = D_{\nabla, \nabla^*}(P_1 : P_2)$ with $\theta(P_1) =: \theta_1$ and $\theta(P_2) =: \theta_2$. It is indeed well-known that Bregman divergences modulo affine terms coincide [5]. For the quasi-arithmetic averages $M_{\nabla \bar{F}}$ and $M_{\nabla F}$, we thus obtain the following invariance property:

$$M_{\nabla \bar{F}}(\theta_1,\ldots;\theta_n;w) = M_{\nabla F}(\theta_1,\ldots;\theta_n;w).$$

Second, consider an affine change of coordinates $\bar{\theta} = A\theta + b$ for $A \in \mathrm{GL}(d)$ and $b \in \mathbb{R}^d$, and define the potential function $\bar{F}(\bar{\theta})$ such that $\bar{F}(\bar{\theta}) = F(\theta)$. We have $\theta = A^{-1}(\bar{\theta} - b)$ and $\bar{F}(x) = F(A^{-1}(x - b))$. It follows that

$$\nabla \overline{F}(x) = (A^{-1})^{\top} \nabla F(A^{-1}(x-b)).$$

and we check that $B_{\overline{F}(\overline{\theta_1}:\overline{\theta_2})} = B_F(\theta_1:\theta_2)$:

$$B_{\bar{F}(\bar{F}(\overline{\theta_1}:\overline{\theta_2})} = \bar{F}(\overline{\theta_1}) - \bar{F}(\overline{\theta_2}) - \langle \overline{\theta_1} - \overline{\theta_2}, \nabla \bar{F}(\overline{\theta_2}) \rangle,$$

$$= F(\theta_1) - F(\theta_2) - (A(\theta_1 - \theta_2))^\top (A^{-1})^\top \nabla F(\theta_2),$$

$$= F(\theta_1) - F(\theta_2) - (\theta_1 - \theta_2)^\top \underbrace{A^\top (A^{-1})^\top}_{(A^{-1}A)^\top = I} \nabla F(\theta_2) = B_F(\theta_1:\theta_2).$$

This highlights the invariance that $D_{\nabla,\nabla^*}(P_1:P_2) = B_F(\theta_1:\theta_2) = B_{\bar{F}}(\bar{\theta}_1:\bar{\theta}_2)$, i.e., the canonical divergence does not change under a reparameterization of the ∇ -affine coordinate system. For the induced quasi-arithmetic averages $M_{\nabla\bar{F}}$ and $M_{\nabla F}$, we have $\nabla \bar{F}(x) = (A^{-1})^{\top} \nabla F(A^{-1}(x-b)) = y$, we calculate

$$x = \nabla \bar{F}(x)^{-1}(y) = A \nabla \bar{F}^{-1}(((A^{-1})^{\top})^{-1}y) + b,$$

and we have

$$\begin{split} M_{\nabla \bar{F}}(\bar{\theta}_1, \dots, \bar{\theta}_n; w) &:= \nabla \bar{F}^{-1}(\sum_i w_i \nabla \bar{F}(\bar{\theta}_i)), \\ &= (\nabla \bar{F})^{-1} \left((A^{-1})^\top \sum_i w_i \nabla F(\theta_i) \right), \\ &= A \nabla F^{-1} \left(\underbrace{((A^{-1})^\top)^{-1} (A^{-1})^\top}_{=I} \sum_i w_i \nabla F(\theta_i) \right) + b, \\ M_{\nabla \bar{F}}(\bar{\theta}_1, \dots, \bar{\theta}_n; w) &= A M_{\nabla F}(\theta_1, \dots, \theta_n; w) + b \end{split}$$

More generally, we may define $\overline{F}(\overline{\theta}) = F(A\theta + b) + \langle c, \theta \rangle + d$ and get via Legendre transformation $\overline{F}^*(\overline{\eta}) = F^*(A^*\eta + b^*) + \langle c^*, \eta \rangle + d^*$ (with A^*, b^*, c^* and d^* expressed using A, b, c and d since these parameters are linked by the Legendre transformation).

7

Third, the canonical divergences should be considered relative divergences (and not absolute divergences), and defined according to a prescribed arbitrary "unit" $\lambda > 0$. Thus we can scale the canonical divergence by $\lambda > 0$, i.e., $D_{\lambda,\nabla,\nabla^*} := \lambda D_{\nabla,\nabla^*}$. We have $D_{\lambda,\nabla,\nabla^*}(P_1:P_2) = \lambda B_F(\theta_1:\theta_2) = \lambda B_{F^*}(\eta_2:\eta_1)$, and $\lambda B_F(\theta_1:\theta_2) = B_{\lambda F}(\theta_1:\theta_2)$ (and $\nabla \lambda F = \lambda \nabla F$). We check the scale invariance of quasi-arithmetic averages: $M_{\lambda \nabla F} = M_{\nabla F}$.

Proposition 2 (Invariance and equivariance of QACs). Let $F(\theta)$ be a function of Legendre type. Then $\overline{F}(\overline{\theta}) := \lambda(F(A\theta+b) + \langle c, \theta \rangle + d)$ for $A \in GL(d)$, $b, c \in \mathbb{R}^d$, $d \in \mathbb{R}^d$ and $\lambda \in \mathbb{R}_{>0}$ is a Legendre-type function, and we have

$$M_{\nabla \bar{F}} = A M_{\nabla F} + b.$$

This proposition generalizes the invariance property of scalar QAMs, and untangles the role of scale $\lambda > 0$ from the other invariance roles brought by the Legendre transformation.

Consider the Mahalanobis divergence Δ^2 (i.e., the squared Mahalanobis distance Δ) as a Bregman divergence obtained for the quadratic form generator $F_Q(\theta) = \frac{1}{2}\theta^\top Q\theta + c\theta + \kappa$ for a symmetric positive-definite $d \times d$ matrix Q, $c \in \mathbb{R}^d$ and $\kappa \in \mathbb{R}$. We have:

$$\Delta^{2}(\theta_{1},\theta_{2}) = B_{F_{Q}}(\theta_{1}:\theta_{2}) = \frac{1}{2}(\theta_{2}-\theta_{1})^{\top}Q(\theta_{2}-\theta_{1}).$$

When Q = I, the identity matrix, the Mahalanobis divergence coincides with the Euclidean divergence² (i.e., the squared Euclidean distance). The Legendre convex conjugate is

$$F^*(\eta) = \frac{1}{2}\eta^\top Q^{-1}\eta = F_{Q^{-1}}(\eta),$$

and we have $\eta = \nabla F_Q(\theta) = Q\theta$ and $\theta = \nabla F_Q^*(\eta) = Q^{-1}\eta$. Thus we get the following dual quasi-arithmetic averages:

$$M_{\nabla F_Q}(\theta_1, \dots, \theta_n; w) = Q^{-1} \left(\sum_{i=1}^n w_i Q \theta_i \right) = \sum_{i=1}^n w_i \theta_i = M_{\mathrm{id}}(\theta_1, \dots, \theta_n; w),$$
$$M_{\nabla F_Q^*}(\eta_1, \dots, \eta_n; w) = Q \left(\sum_{i=1}^n w_i Q^{-1} \eta_i \right) = M_{\mathrm{id}}(\eta_1, \dots, \eta_n; w).$$

The dual quasi-arithmetic centers $M_{\nabla F_Q}$ and $M_{\nabla F_Q^*}$ induced by a Mahalanobis Bregman generator F_Q coincide since $M_{\nabla F_Q} = M_{\nabla F_Q^*} = M_{\rm id}$. This means geometrically that the left-sided and right-sided centroids of the underlying canonical divergences match. The average $M_{\nabla F_Q}(\theta_1, \ldots, \theta_n; w)$ expresses the centroid $C = \bar{C}_R = \bar{C}_L$ in the θ -coordinate system ($\theta(C) = \underline{\theta}$) and the average $M_{\nabla F_Q^*}(\eta_1, \ldots, \eta_n; w)$ expresses the same centroid in the η -coordinate system ($\eta(C) = \underline{\eta}$). In that case of self-dual flat Euclidean geometry, there is an affine

² The squared Euclidean/Mahalanobis divergence are not metric distances since they fail the triangle inequality.

transformation relating the θ - and η -coordinate systems: $\eta = Q\theta$ and $\theta = Q^{-1}\eta$. As we shall see this is because the underlying geometry is self-dual Euclidean flat space $(M, g_{\text{Euclidean}}, \nabla_{\text{Euclidean}}, \nabla_{\text{Euclidean}}^* = \nabla_{\text{Euclidean}})$ and that both dual connections coincide with the Euclidean connection (i.e., the Levi-Civita connection of the Euclidean metric). In this particular case, the dual coordinate systems are just related by affine transformations.

4 Quasi-arithmetic mixtures and Jensen-Shannon-type divergences

Consider a quasi-arithmetic mean M_f and n probability distributions P_1, \ldots, P_n all dominated by a measure μ , and denote by $p_1 = \frac{dP_1}{d\mu}, \ldots, p_n = \frac{dP_n}{d\mu}$ their Radon-Nikodym derivatives. Let us define *statistical* M_f -mixtures of p_1, \ldots, p_n :

Definition 4. The M_f -mixture of n densities p_1, \ldots, p_n weighted by $w \in \Delta_n^\circ$ is defined by

$$(p_1, \dots, p_n; w)^{M_f}(x) := \frac{M_f(p_1(x), \dots, p_n(x); w)}{\int M_f(p_1(x), \dots, p_n(x); w) d\mu(x)}$$

The quasi-arithmetic mixture (QAMIX) $(p_1, \ldots, p_n; w)^{M_f}$ generalizes the ordinary statistical mixture $\sum_{i=1}^d w_i p_i(x)$ when f(t) = t and $M_f = A$ is the arithmetic mean. A statistical M_f -mixture can be interpreted as the M_f -integration of its weighted component densities, the densities p_i . The power mixtures $(p_1, \ldots, p_n; w)^{M_p}(x)$ (including the ordinary and geometric mixtures) are called α -mixtures in [3] with $\alpha(p) = 1 - 2p$ (or equivalently $p = \frac{1-\alpha}{2}$). A nice characterization of the α -mixtures is that these mixtures are the *density centroids* of the weighted mixture components with respect to the α -divergences [3] (proven by calculus of variation):

$$(p_1,\ldots,p_n;w)^{M_\alpha} = \arg\min_p \sum_i w_i D_\alpha(p_i,p),$$

where D_{α} denotes the α -divergences [4, 20]. See also the entropic means defined according to *f*-divergences [6]. M_f -mixtures can also been used to define a generalization of the Jensen-Shannon divergence [17] between densities p and q as follows:

$$D_{\rm JS}^{M_f}(p,q) := \frac{1}{2} \left(D_{\rm KL}(p:(pq)^{M_f}) + D_{\rm KL}(q:(pq)^{M_f}) \right) \ge 0, \tag{8}$$

where $D_{\text{KL}}(p:q) = \int p(x) \log \frac{p(x)}{q(x)} d\mu(x)$ is the Kullback-Leibler divergence, and $(pq)^{M_f} := (p,q; \frac{1}{2}, \frac{1}{2})^{M_f}$. The ordinary JSD is recovered when f(t) = t and $M_f = A$:

$$D_{\rm JS}(p,q) = \frac{1}{2} \left(D_{\rm KL}\left(p:\frac{p+q}{2}\right) + D_{\rm KL}\left(q:\frac{p+q}{2}\right) \right).$$

9

In general, we may consider quasi-arithmetic paths between densities on the space \mathcal{P} of probability density functions with a common support all dominated by a reference measure. On \mathcal{P} , we can build a parametric statistical model called a M_{f} -mixture family of order n as follows:

$$\mathcal{F}_{p_0,p_1,\dots,p_n}^{M_f} := \left\{ (p_0, p_1, \dots, p_n; (\theta, 1))^{M_f} : \theta \in \Delta_n^{\circ} \right\}$$

In particular, power q-paths have been investigated in [13] with applications in annealing importance sampling and other Monte Carlo methods.

To conclude, let us give a geometric definition of a generalization of the Jensen-Shannon divergence on \mathcal{P} according to an arbitrary affine connection [4, 27] ∇ :

Definition 5 (Affine connection-based ∇ -Jensen-Shannon divergence). Let ∇ be an affine connection on the space of densities \mathcal{P} , and $\gamma_{\nabla}(p,q;t)$ the geodesic linking density $p = \gamma_{\nabla}(p,q;0)$ to density $q = \gamma_{\nabla}(p,q;1)$. Then the ∇ -Jensen-Shannon divergence is defined by:

$$D_{\nabla}^{\mathrm{JS}}(p,q) := \frac{1}{2} \left(D_{\mathrm{KL}}\left(p : \gamma_{\nabla}\left(p,q;\frac{1}{2}\right) \right) + D_{\mathrm{KL}}\left(q : \gamma_{\nabla}\left(p,q;\frac{1}{2}\right) \right) \right).$$
(9)

When $\nabla = \nabla^m$ is chosen as the mixture connection [4], we end up with the ordinary Jensen-Shannon divergence since $\gamma_{\nabla^m}(p,q;\frac{1}{2}) = \frac{p+q}{2}$. When $\nabla = \nabla^e$, the exponential connection, we get the geometric Jensen-Shannon divergence [17] since $\gamma_{\nabla^e}(p,q;\frac{1}{2}) = (pq)^G$ is a statistical geometric mixture. We may consider the α -connections [4] ∇^{α} of parametric or non-parametric statistical models, and skew the geometric Jensen-Shannon divergence to define the β -skewed ∇^{α} -JSD:

$$D_{\nabla^{\alpha},\beta}^{\rm JS}(p,q) = \beta D_{\rm KL}(p:\gamma_{\nabla^{\alpha}}(p,q;\beta)) + (1-\beta) D_{\rm KL}(q:\gamma_{\nabla^{\alpha}}(p,q;\beta)).$$
(10)

A longer technical report of this work is available [19].

References

- Alić, M., Mond, B., Pečarić, J., Volenec, V.: The arithmetic-geometric-harmonicmean and related matrix inequalities. Linear Algebra and its Applications 264, 55-62 (1997)
- Amari, S.i.: Differential-geometrical methods in statistics. Lecture Notes on Statistics 28, 1 (1985)
- 3. Amari, S.i.: Integration of stochastic models by minimizing α -divergence. Neural computation **19**(10), 2780–2796 (2007)
- 4. Amari, S.i.: Information Geometry and Its Applications. Applied Mathematical Sciences, Springer Japan (2016)
- Banerjee, A., Merugu, S., Dhillon, I.S., Ghosh, J., Lafferty, J.: Clustering with Bregman divergences. Journal of machine learning research 6(10) (2005)
- Ben-Tal, A., Charnes, A., Teboulle, M.: Entropic means. Journal of Mathematical Analysis and Applications 139(2), 537-551 (1989)

- 10 Frank Nielsen
- Bhatia, R., Gaubert, S., Jain, T.: Matrix versions of the Hellinger distance. Letters in Mathematical Physics 109(8), 1777-1804 (2019)
- 8. Boyd, S., Boyd, S.P., Vandenberghe, L.: Convex optimization. Cambridge university press (2004)
- Bregman, L.M.: The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming. USSR computational mathematics and mathematical physics 7(3), 200-217 (1967)
- Clarke, F.: On the inverse function theorem. Pacific Journal of Mathematics 64(1), 97-102 (1976)
- 11. Dontchev, A.L., Rockafellar, R.T., Rockafellar, R.T.: Implicit functions and solution mappings: A view from variational analysis, vol. 11. Springer (2009)
- 12. Hardy, G.H., Littlewood, J.E., Pólya, G., Pólya, G.: Inequalities. Cambridge university press (1952)
- Masrani, V., Brekelmans, R., Bui, T., Nielsen, F., Galstyan, A., Ver Steeg, G., Wood, F.: q-paths: Generalizing the geometric annealing path using power means. In: Uncertainty in Artificial Intelligence. pp. 1938-1947. PMLR (2021)
- Nakajima, N., Ohmoto, T.: The dually flat structure for singular models. Information Geometry 4(1), 31-64 (2021)
- Nakamura, Y.: Algorithms associated with arithmetic, geometric and harmonic means and integrable systems. Journal of computational and applied mathematics 131(1-2), 161-174 (2001)
- Niculescu, C., Persson, L.E.: Convex functions and their applications, vol. 23. Springer (2006)
- 17. Nielsen, F.: On the Jensen-Shannon symmetrization of distances relying on abstract means. Entropy **21**(5), 485 (2019)
- Nielsen, F.: Statistical Divergences between Densities of Truncated Exponential Families with Nested Supports: Duo Bregman and Duo Jensen Divergences. Entropy 24(3), 421 (2022)
- 19. Nielsen, F.: Beyond scalar quasi-arithmetic means: Quasi-arithmetic averages and quasi-arithmetic mixtures in information geometry (2023)
- 20. Nielsen, F., Nock, R., Amari, S.i.: On clustering histograms with k-means by using mixed α -divergences. Entropy **16**(6), 3273–3301 (2014)
- Nock, R., Nielsen, F.: Fitting the smallest enclosing Bregman ball. In: European Conference on Machine Learning. pp. 649–656. Springer (2005)
- 22. Ohara, A.: Geodesics for dual connections and means on symmetric cones. Integral Equations and Operator Theory **50**, 537–548 (2004)
- Pálfia, M.: Classification of affine matrix means. arXiv preprint arXiv:1208.5603 (2012)
- 24. Rockafellar, R.T.: Conjugates and Legendre transforms of convex functions. Canadian Journal of Mathematics **19**, 200–205 (1967)
- 25. Rockafellar, R.T.: Convex analysis, vol. 11. Princeton university press (1997)
- Shima, H., Yagi, K.: Geometry of Hessian manifolds. Differential geometry and its applications 7(3), 277-290 (1997)
- Zhang, J.: Nonparametric information geometry: From divergence function to referential-representational biduality on statistical manifolds. Entropy 15(12), 5384-5418 (2013)