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Abstract. We first explain how the information geometry of Bregman
manifolds brings a natural generalization of scalar quasi-arithmetic means
that we term quasi-arithmetic centers. We study the invariance and
equivariance properties of quasi-arithmetic centers from the viewpoint
of the Fenchel-Young canonical divergences. Second, we consider statis-
tical quasi-arithmetic mixtures and define generalizations of the Jensen-
Shannon divergence according to geodesics induced by affine connections.
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1 Introduction

Let A,y = {(w1,...,w,) : w; > 0,5, w; = 1} C R? denotes the closed
(n — 1)-dimensional standard simplex sitting in R™, 9 be the set boundary op-
erator, and AS_; = A,_1\0A,,_1 the open standard simplex. Weighted quasi-
arithmetic means [12] (QAMs) generalize the ordinary weighted arithmetic mean
A(zy, ..., xp;w) =), wiz; as follows:

Definition 1 (Weighted quasi-arithmetic mean (1930’s)). Let f : I C
R — R be a strictly monotone and differentiable real-valued function. The
weighted quasi-arithmetic mean (QAM) My(z1,...,xn;w) between n scalars
T1,...,Ty € I C R with respect to a normalized weight vector w € A,_1, is

defined by
My (1, .. an;w) = f (ZMf(%)) .
i=1

Let us write for short My(zy,...,x,) = My(21,...,%,;%,...,2), and

M o(z,y) == Ms(z,y;0,1 — a) for a € [0,1], the weighted bivariate QAM.
A QAM satisfies the in-betweenness property:

min{zy,...,x,} < My(x1,..., 2y, w) < max{zi,...,z,},

and we have [16] M, (z,y) = My (x,y) if and only if g(t) = A f(t)+cfor A € R\{0}
and c € R. The power means M, (z,y) := My, (x,y) are obtained for the following
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continuous family of QAM generators indexed by p € R:

_ [ peR{0}, i, [ (1+1p)F, pe R\{0},
() = {log(t)7 p=0. Sy ()= {exp(t)l? g: 0. ’

Special cases of the power means are the harmonic mean (H = M_;), the geo-
metric mean (G = Mp), the arithmetic mean (A = M;), and the quadratic mean
also called root mean square (Q = Ms). A QAM is said positively homogeneous
if and only if My (Az, A\y) = A My (x,y) for all X > 0. The power means M, are
the only positively homogeneous QAMs [12].

In Section 2, we define a generalization of quasi-arithmetic means called
quasi-arithmetic centers (Definition 3) induced by a Legendre-type function. We
show that the gradient maps of convex conjugate functions are co-monotone
(Proposition 1). We then study their invariance and equivariance properties
(Proposition 2). In Section 4, we define quasi-arithmetic mixtures (Definition 4),
show their connections to geodesics, and define a generalization of the Jensen-
Shannon divergence with respect to affine connections (Definition 5).

2 Quasi-arithmetic centers and information geometry

2.1 Quasi-arithmetic centers

To generalize scalar QAMs to other non-scalar types such as vectors or matrices,
we face two difficulties:

1. we need to ensure that the generator G : X — R admits a global inverse!

G~1, and
2. we would like the smooth function G to bear a generalization of monotonicity
of univariate functions.

We consider a well-behaved class F of non-scalar functions G (i.e., vector or
matrix functions) which admits global inverse functions G~! belonging to the
same class F: Namely, we consider the gradient maps of Legendre-type functions
where Legendre-type functions are defined as follows:

Definition 2 (Legendre type function [24]). (O, F) is of Legendre type if
the function F : © C X — R is strictly convex and differentiable with © # () an
open conver set and

lim iF(Ae +(1=Nf) =—0c0, VOecO,VIecIO. (1)
A—0 dA

Legendre-type functions F(©) admits a convex conjugate F*(n) of Legendre
type via the Legendre transform (Theorem 1 [24]):

F*(n) = (VF~'(n),n) = F(VF ™ (n)),

! The inverse function theorem [10,11] in multivariable calculus states only the local
existence of an inverse continuously differentiable function G~! for a multivariate
function G provided that the Jacobian matrix of G is not singular
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where (0,7) denotes the inner product in X (e.g., Euclidean inner product
(0,m) = 0T n for X = RY, the Hilbert-Schmidt inner product (A, B) := tr(ABT)
where tr(-) denotes the matrix trace for X = Matg 4(R), etc.), and n € H with H
the image of the gradient map VF : © — H. Moreover, we have VF* = (VF) ™!
and VF = (VF*)71, i.e., gradient maps of conjugate functions are reciprocal to
each others.

The gradient of a strictly convex function of Legendre type exhibit a gen-
eralization of the notion of monotonicity of univariate functions: A function
G : X — R is said strictly increasing co-monotone if

V91,92 EX,el 7592, <91 —92,G(91)—G(92)> > 0.
and strictly decreasing co-monotone if —G is strictly increasing co-monotone.

Proposition 1 (Gradient co-monotonicity [25]). The gradient functions
VE(0) and VF*(n) of the Legendre-type convexr conjugates F' and F* in F are
strictly increasing co-monotone functions.

Proof. We have to prove that
<02 — 0y, VF(QQ) — VF(91)> >0, Vo, 7é 0, € © (2)
(m2 —m,VF*(n2) = VEF*(m)) >0, Vm #mneH (3)

The inequalities follow by interpreting the terms of the left-hand-side of Eq. 2
and Eq. 3 as Jeffreys-symmetrization [17] of the dual Bregman divergences [9]
BF and BF*Z

BF<91 : 92) = F(Ql) - F(92) - <(91 - 92,VF(92)> Z 0,
Bp«(m :m2) = F*(m) — F*(n2) — (m —n2, VI (12)) > 0,

where the first equality holds if and only if #; = 65 and the second inequality
holds iff 7; = n3. Indeed, we have the following Jeffreys-symmetrization of the
dual Bregman divergences:

BF(91 : 92) + BF(GQ : 91) = <92 — Hl,VF(Gg) — VF(01)> > 0, Vo, 7& 04
Bp«(m :m2) + Br«(n2 :m) = (n2 —m, VF*(n2) = VF*(m)) >0, Y1 # 2
O

Definition 3 (Quasi-arithmetic centers, QACs)). Let F' : ©®& — R be
a strictly convexr and smooth real-valued function of Legendre-type in F. The
wetghted quasi-arithmetic average of 01, ...,0, and w € A, _1 is defined by the
gradient map VE as follows:

Myp(0y,...,00;w) = VF™! (Z ’lUiVF(Hi)> , (4)

— VF* (Z inF(Hi)> , (5)

where VF* = (VF)™! is the gradient map of the Legendre transform F* of F.
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We recover the usual definition of scalar QAMs M; (Definition 1) when
F(t) = f; f(u)du for a strictly increasing or strictly decreasing and continuous
function f: My = Mp/ (with f~! = (F’)~'). Notice that we only need to consider
F to be strictly convex or strictly concave and smooth to define a multivariate
QAM since MVF = M,VF.

Ezample 1 (Matriz example). Consider the strictly convex function [8] F :
Sym_ , (d) — R with F(0) = —logdet(f), where det(-) denotes the matrix de-
terminant. Function F'() is strictly convex and differentiable [8] on the domain
of d-dimensional symmetric positive-definite matrices Sym, , (d) (open convex
cone). We have

where the dual parameter n belongs to the d-dimensional negative-definite matrix
domain, and the inner matrix product is the Hilbert-Schmidt inner product
(A, B) :=tr(ABT), where tr(-) denotes the matrix trace. It follows that

Myp(61,05) = 2007 + 605171,

is the matrix harmonic mean [1] generalizing the scalar harmonic mean H (a, b) =

% for a,b > 0. Other examples of matrix means are reported in [7].

2.2 Quasi-arithmetic barycenters and dual geodesics
A Bregman generator F : © — R induces a dually flat space [4]
(©,9(0) = VGF(0),V,V7)

that we call a Bregman manifold (Hessian manifold with a global chart), where
V is the flat connection with Christoffel symbols I5;,(8) = 0 and V* is the dual
connection with respect to g such that I"*%*(n) = 0.

In a Bregman manifold, the primal geodesics yv (P, @;t) are obtained as
line segments in the #-coordinate system (because the Christoffel symbols of
the connection V vanishes in the 6-coordinate system) while the dual geodesics
~yv+ (P, Q;t) are line segments in the 7-coordinate system (because the Christof-
fel symbols of the dual connection V* vanishes in the 7-coordinate system).
The dual geodesics define interpolation schemes (PQ)V(t) = v (P,Q;t) and
(PQ)Y" (t) = yv- (P, Q;t) between input points P and Q with P = y¢ (P, Q;0) =
Yo+ (P,Q;0) and Q = vv(P,Q;1) = yv~(P,Q;1) when t ranges in [0,1]. We
express the coordinates of the interpolated points on v and -y« using quasi-
arithmetic averages as follows:
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V-geodesic yv (P, Q;t) = (PQ)Y (t)

Mi (G(P)v 9(@)7 1 - t7t)
(PQ)Y(H) = ( Mg (n(P)n(@)i1—1,1) )

P Q

V*-geodesic yy-(P,Q;t) = (PQ)Y (t)

“oy — [ Mwr(0(P),0(Q);1—1t,1)
(M7 g, V, v*) (PR ) = ( Mia(n(P),n(Q); 1 —¢,t) )

Fig. 1. The points on dual geodesics in a dually flat spaces have dual coordinates
expressed with quasi-arithmetic averages.

P70 =m0 = pE OO ] ©
(PO () = - (P.0it) = | E RIS EOT

where id denotes the identity mapping. See Figure 1.

Quasi-arithmetic centers were also used by a geodesic bisection algorithm
to approximate the circumcenter of the minimum enclosing balls with respect
to the canonical divergence in Bregman manifolds in [21], and for defining the
Riemannian center of mass between two symmetric positive-definite matrices
with respect to the trace metric in [15]. See also [22, 23].

3 Invariance and equivariance properties

A dually flat manifold [4] (M,g,V,V*) has a canonical divergence [2] Dy v~
which can be expressed either as a primal Bregman divergence in the V-affine
coordinate system 6 (using the convex potential function F()) or as a dual
Bregman divergence in the V*-affine coordinate system 7 (using the convex con-
jugate potential function F*(n)), or as dual Fenchel-Young divergences [18] using
the mixed coordinate systems 6 and 7. The dually flat manifold (M, g, V, V*)
(a particular case of Hessian manifolds [26] which admit a global coordinate
system) is thus characterized by (6, F(6);n, F*(n)) which we shall denote by
(M,g,V,V*) < DFS(0, F(0);n, F*(n)) (or in short (M, g,V,V*) < (O, F(H))).
However, the choices of parameters 6 and 7 and potential functions F'(#) and
F*(n) are not unique since they can be chosen up to affine reparameterizations
and additive affine terms [4]: (M, g,V,V*) <~ DFS([0, F(0);n, F*(n)]) where [/]
denotes the equivalence class that has been called purposely the affine Legendre
invariance in [14]:
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First, consider changing the potential function F(#) by adding an affine term:
F(0) = F(0) + {c,0) + d. We have VF(0) = VF(0) + ¢ = 7. Inverting VF(z) =
VE(x) 4+ ¢ =y, we get VE~1(y) = VF(y — ¢). We check that Bg(6; : ) =
Bp (01 :02) = Dy v-(P; : Py) with 0(P;) =: 61 and 6(P;) =: 0. It is indeed well-
known that Bregman divergences modulo affine terms coincide [5]. For the quasi-
arithmetic averages My and Myp, we thus obtain the following invariance
property:

Mygp(b1,...;0nw) = Myp(61,...;0,;w).

Second, consider an affine change of coordinates § = A + b for A € GL(d)
and b € R?, and define the potential function F(6) such that F () = F(6). We
have § = A=Y(0 — b) and F(x) = F(A~!(z —b)). It follows that

VF(z) = (A"Y)TVF(A Y (z - b)),

and we check that BF(K:@) = Bp(0; : 05):

Bpparay = F(01) = F(02) — (61 — 02, VF(62))
= F(61) = F(02) = (A(61 = 62)) (A1) 'VF(0),
== F(Gl) - F(92) (01 - 02) (A I)T VF(GQ) == BF(91 : 02)
~—_————

(A-1A)T=T
This highlights the invariance that Dy v+ (P; : P2) = Bp(6y : 62) = Bp(g,:6,):
i.e., the canonical divergence does not change under a reparameterization of the

V-affine coordinate system. For the induced quasi-arithmetic averages My » and
My r, we have VF(z) = (A~Y) TVF(A~Y(z — b)) = y, we calculate

x=VF(z) Yy) = AVEL((A™H ) 1y) +b,

and we have

Mggp(0r,...,0p;w) == VF (> w;VF(0
= (VF)™! ((Al)T ZWVF(@-)) ,
= AVF! (((Al)T)l(Al)TZwNF(ei)) +b
=I @

My p(@,...,Oniw) = AMgp(fy,...,0n;0) +b

More generally, we may define F'(f) = F(AO + b) + (c,0) + d and get via
Legendre transformation F*() = F*(A*n + b*) + (c*,n) + d* (with A% b* c*
and d* expressed using A,b,c and d since these parameters are linked by the
Legendre transformation).
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Third, the canonical divergences should be considered relative divergences
(and not absolute divergences), and defined according to a prescribed arbi-
trary “unit” A > 0. Thus we can scale the canonical divergence by A > 0, i.e.,
D)\,V,V* = )\Dv’v*. We have D)\’v’v* (P1 : P2) = )\BF(01 : 92) = )\BF* (772 : ’171),
and ABp(0; : 63) = Byp(61 : 02) (and VAF = AVF). We check the scale invari-
ance of quasi-arithmetic averages: Myyr = Mvp.

Proposition 2 (Invariance and equivariance of QACs). Let F(0) be a
function of Legendre type. Then F(0) := A(F(A0+b)+(c,8)+d) for A € GL(d),
b,c e R? deR? and X € Rwg is a Legendre-type function, and we have

This proposition generalizes the invariance property of scalar QAMs, and
untangles the role of scale A > 0 from the other invariance roles brought by the
Legendre transformation.

Consider the Mahalanobis divergence A? (i.e., the squared Mahalanobis dis-
tance A) as a Bregman divergence obtained for the quadratic form generator

1

Fo(8) = §0TQ9 + ¢l + k for a symmetric positive-definite d x d matrix Q,

¢ € R?% and k € R. We have:
1
A%(01,05) = Bp, (01 : 02) = 5(92 —60)" Q6 —6y).

When @ = I, the identity matrix, the Mahalanobis divergence coincides with
the Euclidean divergence? (i.e., the squared Euclidean distance). The Legendre
convex conjugate is
* 1 —
F*(n) = 50" Q"'n = Fo-1(n),
and we have n = VFo(0) = Q0 and 0 = VFj5(n) = Q" 'n. Thus we get the
following dual quasi-arithmetic averages:

Mypg(01,..., 00 w) = Q™ (ZwQG) = wibh = Mia(0y, ..., 0n;w),
i=1 i=1

n
Mypg(n1, .- miw) = Q (ZwiQ_lnz) = Mia(n1, - -, s w).
=1

The dual quasi-arithmetic centers My, and Mvpé induced by a Maha-
lanobis Bregman generator Fg coincide since Myp, = Mvyrs = Mq. This
means geometrically that the left-sided and right-sided centroids of the under-
lying canonical divergences match. The average Mvr, (01,...,0,;w) expresses
the centroid C' = Cr = C, in the 6-coordinate system (6(C) = 0) and the aver-
age MVFé (M, ..., Mn;w) expresses the same centroid in the 7-coordinate system
(n(C) = n). In that case of self-dual flat Euclidean geometry, there is an affine

2 The squared Euclidean/Mahalanobis divergence are not metric distances since they
fail the triangle inequality.
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transformation relating the 6- and 7-coordinate systems:n = Q0 and 0 = Q" 'n.
As we shall see this is because the underlying geometry is self-dual Euclidean
flat space (Ma JEuclidean vEuclidcana VEuclidean = vEuclidcan) and that both dual
connections coincide with the Euclidean connection (i.e., the Levi-Civita con-
nection of the Euclidean metric). In this particular case, the dual coordinate
systems are just related by affine transformations.

4 Quasi-arithmetic mixtures and Jensen-Shannon-type

divergences
Consider a quasi-arithmetic mean My and n probability distributions P, ..., P,
all dominated by a measure p, and denote by p; = (if;l,...,pn = ddi" their
Radon-Nikodym derivatives. Let us define statistical M¢-miztures of p1,...,pp:

Definition 4. The My-mizture of n densities p1,...,p, weighted by w € A; is
defined by

Sw My ) = Mf(pl(x),,pn(x),UJ)
(P pns ) () S My(pr(x),...,pp(2); w)dp(z)

The quasi-arithmetic mixture (QAMIX) (p1,...,pn;w)™/ generalizes the
ordinary statistical mixture Zlewipi(a:) when f(t) = ¢t and My = A is
the arithmetic mean. A statistical M-mixture can be interpreted as the M-
integration of its weighted component densities, the densities p;. The power
mixtures (py,...,pn;w)M»(z) (including the ordinary and geometric mixtures)
are called a-mixtures in [3| with a(p) = 1 —2p (or equivalently p = 15%). A nice
characterization of the a-mixtures is that these mixtures are the density cen-
troids of the weighted mixture components with respect to the a-divergences [3]

(proven by calculus of variation):

(plv v 7pn;w)Ma = argmpinzwiDa(piap)v
i

where D, denotes the a—divergences [4, 20]. See also the entropic means defined
according to f-divergences [6]. M -mixtures can also been used to define a gen-
eralization of the Jensen-Shannon divergence [17] between densities p and ¢ as
follows:

(Dxw(p : (pg)™*) + Dxw(q : (pg)™)) >0, (8)

N[ =

M
DJSf (p,q) ==

where Dkri,(p: q) = [ p(z)log %du(m) is the Kullback-Leibler divergence, and

(pg)Mr := (p,q;3,3)™s. The ordinary JSD is recovered when f(t) = t and

My = A:
1 n N
Disp.q) = (DKL (p: ch1> ‘D (q | qu» |
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In general, we may consider quasi-arithmetic paths between densities on the
space P of probability density functions with a common support all dominated
by a reference measure. On P, we can build a parametric statistical model called
a M y-mixture family of order n as follows:

M o
Foolotspn = {(po,pl, N A 1))Mf : 0c¢ A”} .

In particular, power g-paths have been investigated in [13] with applications in
annealing importance sampling and other Monte Carlo methods.

To conclude, let us give a geometric definition of a generalization of the
Jensen-Shannon divergence on P according to an arbitrary affine connection [4,
27 V:

Definition 5 (Affine connection-based V-Jensen-Shannon divergence).
Let V be an affine connection on the space of densities P, and vyv(p,q;t) the
geodesic linking density p = vv(p, ¢;0) to density ¢ = yv(p,q;1). Then the V-
Jensen-Shannon divergence is defined by:

DE(p,q) = % <DKL <p 0Ny (p,q; ;)) + Dk (q Ny (p,q; ;))) )

When V = V™ is chosen as the mixture connection [4], we end up with the
ordinary Jensen-Shannon divergence since vy (p, g; %) = I’Qﬂ. When V = V¢,
the exponential connection, we get the geometric Jensen-Shannon divergence [17]
since yve(p, ¢; %) = (pq)® is a statistical geometric mixture. We may consider
the a-connections [4] V¢ of parametric or non-parametric statistical models, and
skew the geometric Jensen-Shannon divergence to define the g-skewed V<-JSD:

D3 5(p,q) = BDxL(p : vve (p, 4 8)) + (1 — B) Dxi(q : vwe(p, ¢ 8).  (10)

A longer technical report of this work is available [19].
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