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Abstract. We �rst explain how the information geometry of Bregman
manifolds brings a natural generalization of scalar quasi-arithmetic means
that we term quasi-arithmetic centers. We study the invariance and
equivariance properties of quasi-arithmetic centers from the viewpoint
of the Fenchel-Young canonical divergences. Second, we consider statis-
tical quasi-arithmetic mixtures and de�ne generalizations of the Jensen-
Shannon divergence according to geodesics induced by a�ne connections.
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1 Introduction

Let ∆n−1 = {(w1, . . . , wn) : wi ≥ 0,
∑
i wi = 1} ⊂ Rd denotes the closed

(n − 1)-dimensional standard simplex sitting in Rn, ∂ be the set boundary op-
erator, and ∆◦n−1 = ∆n−1\∂∆n−1 the open standard simplex. Weighted quasi-
arithmetic means [12] (QAMs) generalize the ordinary weighted arithmetic mean
A(x1, . . . , xn;w) =

∑
i wixi as follows:

De�nition 1 (Weighted quasi-arithmetic mean (1930's)). Let f : I ⊂
R → R be a strictly monotone and di�erentiable real-valued function. The
weighted quasi-arithmetic mean (QAM) Mf (x1, . . . , xn;w) between n scalars
x1, . . . , xn ∈ I ⊂ R with respect to a normalized weight vector w ∈ ∆n−1, is
de�ned by

Mf (x1, . . . , xn;w) := f−1

(
n∑
i=1

wif(xi)

)
.

Let us write for short Mf (x1, . . . , xn) := Mf (x1, . . . , xn; 1
n , . . . ,

1
n ), and

Mf,α(x, y) := Mf (x, y;α, 1 − α) for α ∈ [0, 1], the weighted bivariate QAM.
A QAM satis�es the in-betweenness property:

min{x1, . . . , xn} ≤Mf (x1, . . . , xn;w) ≤ max{x1, . . . , xn},

and we have [16]Mg(x, y) = Mf (x, y) if and only if g(t) = λf(t)+c for λ ∈ R\{0}
and c ∈ R. The power meansMp(x, y) := Mfp(x, y) are obtained for the following
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continuous family of QAM generators indexed by p ∈ R:

fp(t) =

{
tp−1
p , p ∈ R\{0},

log(t), p = 0.
, f−1

p (t) =

{
(1 + tp)

1
p , p ∈ R\{0},

exp(t), p = 0.
,

Special cases of the power means are the harmonic mean (H = M−1), the geo-
metric mean (G = M0), the arithmetic mean (A = M1), and the quadratic mean
also called root mean square (Q = M2). A QAM is said positively homogeneous
if and only if Mf (λx, λy) = λMf (x, y) for all λ > 0. The power means Mp are
the only positively homogeneous QAMs [12].

In Section 2, we de�ne a generalization of quasi-arithmetic means called
quasi-arithmetic centers (De�nition 3) induced by a Legendre-type function. We
show that the gradient maps of convex conjugate functions are co-monotone
(Proposition 1). We then study their invariance and equivariance properties
(Proposition 2). In Section 4, we de�ne quasi-arithmetic mixtures (De�nition 4),
show their connections to geodesics, and de�ne a generalization of the Jensen-
Shannon divergence with respect to a�ne connections (De�nition 5).

2 Quasi-arithmetic centers and information geometry

2.1 Quasi-arithmetic centers

To generalize scalar QAMs to other non-scalar types such as vectors or matrices,
we face two di�culties:

1. we need to ensure that the generator G : X → R admits a global inverse1

G−1, and
2. we would like the smooth function G to bear a generalization of monotonicity

of univariate functions.

We consider a well-behaved class F of non-scalar functions G (i.e., vector or
matrix functions) which admits global inverse functions G−1 belonging to the
same class F : Namely, we consider the gradient maps of Legendre-type functions
where Legendre-type functions are de�ned as follows:

De�nition 2 (Legendre type function [24]). (Θ,F ) is of Legendre type if
the function F : Θ ⊂ X→ R is strictly convex and di�erentiable with Θ 6= ∅ an
open convex set and

lim
λ→0

d

dλ
F (λθ + (1− λ)θ̄) = −∞, ∀θ ∈ Θ,∀θ̄ ∈ ∂Θ. (1)

Legendre-type functions F (Θ) admits a convex conjugate F ∗(η) of Legendre
type via the Legendre transform (Theorem 1 [24]):

F ∗(η) =
〈
∇F−1(η), η

〉
− F (∇F−1(η)),

1 The inverse function theorem [10, 11] in multivariable calculus states only the local
existence of an inverse continuously di�erentiable function G−1 for a multivariate
function G provided that the Jacobian matrix of G is not singular
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where 〈θ, η〉 denotes the inner product in X (e.g., Euclidean inner product
〈θ, η〉 = θ>η for X = Rd, the Hilbert-Schmidt inner product 〈A,B〉 := tr(AB>)
where tr(·) denotes the matrix trace for X = Matd,d(R), etc.), and η ∈ H with H
the image of the gradient map ∇F : Θ → H. Moreover, we have ∇F ∗ = (∇F )−1

and ∇F = (∇F ∗)−1, i.e., gradient maps of conjugate functions are reciprocal to
each others.

The gradient of a strictly convex function of Legendre type exhibit a gen-
eralization of the notion of monotonicity of univariate functions: A function
G : X→ R is said strictly increasing co-monotone if

∀θ1, θ2 ∈ X, θ1 6= θ2, 〈θ1 − θ2, G(θ1)−G(θ2)〉 > 0.

and strictly decreasing co-monotone if −G is strictly increasing co-monotone.

Proposition 1 (Gradient co-monotonicity [25]). The gradient functions
∇F (θ) and ∇F ∗(η) of the Legendre-type convex conjugates F and F ∗ in F are
strictly increasing co-monotone functions.

Proof. We have to prove that

〈θ2 − θ1,∇F (θ2)−∇F (θ1)〉 > 0, ∀θ1 6= θ2 ∈ Θ (2)

〈η2 − η1,∇F ∗(η2)−∇F ∗(η1)〉 > 0, ∀η1 6= η2 ∈ H (3)

The inequalities follow by interpreting the terms of the left-hand-side of Eq. 2
and Eq. 3 as Je�reys-symmetrization [17] of the dual Bregman divergences [9]
BF and BF∗ :

BF (θ1 : θ2) = F (θ1)− F (θ2)− 〈θ1 − θ2,∇F (θ2)〉 ≥ 0,

BF∗(η1 : η2) = F ∗(η1)− F ∗(η2)− 〈η1 − η2,∇F ∗(η2)〉 ≥ 0,

where the �rst equality holds if and only if θ1 = θ2 and the second inequality
holds i� η1 = η2. Indeed, we have the following Je�reys-symmetrization of the
dual Bregman divergences:

BF (θ1 : θ2) +BF (θ2 : θ1) = 〈θ2 − θ1,∇F (θ2)−∇F (θ1)〉 > 0, ∀θ1 6= θ2

BF∗(η1 : η2) +BF∗(η2 : η1) = 〈η2 − η1,∇F ∗(η2)−∇F ∗(η1)〉 > 0, ∀η1 6= η2

�

De�nition 3 (Quasi-arithmetic centers, QACs)). Let F : Θ → R be
a strictly convex and smooth real-valued function of Legendre-type in F . The
weighted quasi-arithmetic average of θ1, . . . , θn and w ∈ ∆n−1 is de�ned by the
gradient map ∇F as follows:

M∇F (θ1, . . . , θn;w) := ∇F−1

(∑
i

wi∇F (θi)

)
, (4)

= ∇F ∗
(∑

i

wi∇F (θi)

)
, (5)

where ∇F ∗ = (∇F )−1 is the gradient map of the Legendre transform F ∗ of F .
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We recover the usual de�nition of scalar QAMs Mf (De�nition 1) when

F (t) =
∫ t
a
f(u)du for a strictly increasing or strictly decreasing and continuous

function f :Mf = MF ′ (with f
−1 = (F ′)−1). Notice that we only need to consider

F to be strictly convex or strictly concave and smooth to de�ne a multivariate
QAM since M∇F = M−∇F .

Example 1 (Matrix example). Consider the strictly convex function [8] F :
Sym++(d) → R with F (θ) = − log det(θ), where det(·) denotes the matrix de-
terminant. Function F (θ) is strictly convex and di�erentiable [8] on the domain
of d-dimensional symmetric positive-de�nite matrices Sym++(d) (open convex
cone). We have

F (θ) = − log det(θ),

∇F (θ) = −θ−1 =: η(θ),

∇F−1(η) = −η−1 =: θ(η)

F ∗(η) = 〈θ(η), η〉 − F (θ(η)) = −d− log det(−η),

where the dual parameter η belongs to the d-dimensional negative-de�nite matrix
domain, and the inner matrix product is the Hilbert-Schmidt inner product
〈A,B〉 := tr(AB>), where tr(·) denotes the matrix trace. It follows that

M∇F (θ1, θ2) = 2(θ−1
1 + θ−1

2 )−1,

is the matrix harmonic mean [1] generalizing the scalar harmonic meanH(a, b) =
2ab
a+b for a, b > 0. Other examples of matrix means are reported in [7].

2.2 Quasi-arithmetic barycenters and dual geodesics

A Bregman generator F : Θ → R induces a dually �at space [4]

(Θ, g(θ) = ∇2
θF (θ),∇,∇∗)

that we call a Bregman manifold (Hessian manifold with a global chart), where
∇ is the �at connection with Christo�el symbols Γijk(θ) = 0 and ∇∗ is the dual
connection with respect to g such that Γ ∗ijk(η) = 0.

In a Bregman manifold, the primal geodesics γ∇(P,Q; t) are obtained as
line segments in the θ-coordinate system (because the Christo�el symbols of
the connection ∇ vanishes in the θ-coordinate system) while the dual geodesics
γ∇∗(P,Q; t) are line segments in the η-coordinate system (because the Christof-
fel symbols of the dual connection ∇∗ vanishes in the η-coordinate system).
The dual geodesics de�ne interpolation schemes (PQ)∇(t) = γ∇(P,Q; t) and
(PQ)∇

∗
(t) = γ∇∗(P,Q; t) between input points P and Q with P = γ∇(P,Q; 0) =

γ∇∗(P,Q; 0) and Q = γ∇(P,Q; 1) = γ∇∗(P,Q; 1) when t ranges in [0, 1]. We
express the coordinates of the interpolated points on γ∇ and γ∇∗ using quasi-
arithmetic averages as follows:
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(M, g,∇,∇∗)

P Q

∇-geodesic γ∇(P,Q; t) = (PQ)∇(t)

∇∗-geodesic γ∇∗(P,Q; t) = (PQ)∇
∗
(t)

(PQ)∇(t) =

(
Mid(θ(P ), θ(Q); 1− t, t)
M∇F∗(η(P ), η(Q); 1− t, t)

)

(PQ)∇
∗
(t) =

(
M∇F (θ(P ), θ(Q); 1− t, t)
Mid(η(P ), η(Q); 1− t, t)

)

Fig. 1. The points on dual geodesics in a dually �at spaces have dual coordinates
expressed with quasi-arithmetic averages.

(PQ)∇(t) = γ∇(P,Q; t) =

[
Mid(θ(P ), θ(Q); 1− t, t)
M∇F∗(η(P ), η(Q); 1− t, t)

]
, (6)

(PQ)∇
∗
(t) = γ∇∗(P,Q; t) =

[
M∇F (θ(P ), θ(Q); 1− t, t)
Mid(η(P ), η(Q); 1− t, t)

]
, (7)

where id denotes the identity mapping. See Figure 1.
Quasi-arithmetic centers were also used by a geodesic bisection algorithm

to approximate the circumcenter of the minimum enclosing balls with respect
to the canonical divergence in Bregman manifolds in [21], and for de�ning the
Riemannian center of mass between two symmetric positive-de�nite matrices
with respect to the trace metric in [15]. See also [22, 23].

3 Invariance and equivariance properties

A dually �at manifold [4] (M, g,∇,∇∗) has a canonical divergence [2] D∇,∇∗

which can be expressed either as a primal Bregman divergence in the ∇-a�ne
coordinate system θ (using the convex potential function F (θ)) or as a dual
Bregman divergence in the ∇∗-a�ne coordinate system η (using the convex con-
jugate potential function F ∗(η)), or as dual Fenchel-Young divergences [18] using
the mixed coordinate systems θ and η. The dually �at manifold (M, g,∇,∇∗)
(a particular case of Hessian manifolds [26] which admit a global coordinate
system) is thus characterized by (θ, F (θ); η, F ∗(η)) which we shall denote by
(M, g,∇,∇∗)← DFS(θ, F (θ); η, F ∗(η)) (or in short (M, g,∇,∇∗)← (Θ,F (θ))).
However, the choices of parameters θ and η and potential functions F (θ) and
F ∗(η) are not unique since they can be chosen up to a�ne reparameterizations
and additive a�ne terms [4]: (M, g,∇,∇∗) ← DFS([θ, F (θ); η, F ∗(η)]) where [·]
denotes the equivalence class that has been called purposely the a�ne Legendre
invariance in [14]:
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First, consider changing the potential function F (θ) by adding an a�ne term:
F̄ (θ) = F (θ) + 〈c, θ〉+ d. We have ∇F̄ (θ) = ∇F (θ) + c = η̄. Inverting ∇F̄ (x) =
∇F (x) + c = y, we get ∇F̄−1(y) = ∇F (y − c). We check that BF (θ1 : θ2) =
BF̄ (θ1 : θ2) = D∇,∇∗(P1 : P2) with θ(P1) =: θ1 and θ(P2) =: θ2. It is indeed well-
known that Bregman divergences modulo a�ne terms coincide [5]. For the quasi-
arithmetic averages M∇F̄ and M∇F , we thus obtain the following invariance
property:

M∇F̄ (θ1, . . . ; θn;w) = M∇F (θ1, . . . ; θn;w).

Second, consider an a�ne change of coordinates θ̄ = Aθ + b for A ∈ GL(d)
and b ∈ Rd, and de�ne the potential function F̄ (θ̄) such that F̄ (θ̄) = F (θ). We
have θ = A−1(θ̄ − b) and F̄ (x) = F (A−1(x− b)). It follows that

∇F̄ (x) = (A−1)>∇F (A−1(x− b)),

and we check that BF̄ (θ1:θ2) = BF (θ1 : θ2):

BF̄ (F̄ (θ1:θ2) = F̄ (θ1)− F̄ (θ2)−
〈
θ1 − θ2,∇F̄ (θ2)

〉
,

= F (θ1)− F (θ2)− (A(θ1 − θ2))>(A−1)>∇F (θ2),

= F (θ1)− F (θ2)− (θ1 − θ2)>A>(A−1)>︸ ︷︷ ︸
(A−1A)>=I

∇F (θ2) = BF (θ1 : θ2).

This highlights the invariance that D∇,∇∗(P1 : P2) = BF (θ1 : θ2) = BF̄ (θ̄1:θ̄2),
i.e., the canonical divergence does not change under a reparameterization of the
∇-a�ne coordinate system. For the induced quasi-arithmetic averagesM∇F̄ and
M∇F , we have ∇F̄ (x) = (A−1)>∇F (A−1(x− b)) = y, we calculate

x = ∇F̄ (x)−1(y) = A∇F̄−1(((A−1)>)−1y) + b,

and we have

M∇F̄ (θ̄1, . . . , θ̄n;w) := ∇F̄−1(
∑
i

wi∇F̄ (θ̄i)),

= (∇F̄ )−1

(
(A−1)>

∑
i

wi∇F (θi)

)
,

= A∇F−1

((A−1)>)−1(A−1)>︸ ︷︷ ︸
=I

∑
i

wi∇F (θi)

+ b,

M∇F̄ (θ̄1, . . . , θ̄n;w) = AM∇F (θ1, . . . , θn;w) + b

More generally, we may de�ne F̄ (θ̄) = F (Aθ + b) + 〈c, θ〉 + d and get via
Legendre transformation F̄ ∗(η̄) = F ∗(A∗η + b∗) + 〈c∗, η〉 + d∗ (with A∗, b∗, c∗

and d∗ expressed using A, b, c and d since these parameters are linked by the
Legendre transformation).
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Third, the canonical divergences should be considered relative divergences
(and not absolute divergences), and de�ned according to a prescribed arbi-
trary �unit� λ > 0. Thus we can scale the canonical divergence by λ > 0, i.e.,
Dλ,∇,∇∗ := λD∇,∇∗ . We haveDλ,∇,∇∗(P1 : P2) = λBF (θ1 : θ2) = λBF∗(η2 : η1),
and λBF (θ1 : θ2) = BλF (θ1 : θ2) (and ∇λF = λ∇F ). We check the scale invari-
ance of quasi-arithmetic averages: Mλ∇F = M∇F .

Proposition 2 (Invariance and equivariance of QACs). Let F (θ) be a
function of Legendre type. Then F̄ (θ̄) := λ(F (Aθ+b)+〈c, θ〉+d) for A ∈ GL(d),
b, c ∈ Rd, d ∈ Rd and λ ∈ R>0 is a Legendre-type function, and we have

M∇F̄ = AM∇F + b.

This proposition generalizes the invariance property of scalar QAMs, and
untangles the role of scale λ > 0 from the other invariance roles brought by the
Legendre transformation.

Consider the Mahalanobis divergence ∆2 (i.e., the squared Mahalanobis dis-
tance ∆) as a Bregman divergence obtained for the quadratic form generator
FQ(θ) = 1

2θ
>Qθ + cθ + κ for a symmetric positive-de�nite d × d matrix Q,

c ∈ Rd and κ ∈ R. We have:

∆2(θ1, θ2) = BFQ(θ1 : θ2) =
1

2
(θ2 − θ1)>Q (θ2 − θ1).

When Q = I, the identity matrix, the Mahalanobis divergence coincides with
the Euclidean divergence2 (i.e., the squared Euclidean distance). The Legendre
convex conjugate is

F ∗(η) =
1

2
η>Q−1η = FQ−1(η),

and we have η = ∇FQ(θ) = Qθ and θ = ∇F ∗Q(η) = Q−1η. Thus we get the
following dual quasi-arithmetic averages:

M∇FQ(θ1, . . . , θn;w) = Q−1

(
n∑
i=1

wiQθi

)
=

n∑
i=1

wiθi = Mid(θ1, . . . , θn;w),

M∇F∗Q(η1, . . . , ηn;w) = Q

(
n∑
i=1

wiQ
−1ηi

)
= Mid(η1, . . . , ηn;w).

The dual quasi-arithmetic centers M∇FQ and M∇F∗Q induced by a Maha-
lanobis Bregman generator FQ coincide since M∇FQ = M∇F∗Q = Mid. This
means geometrically that the left-sided and right-sided centroids of the under-
lying canonical divergences match. The average M∇FQ(θ1, . . . , θn;w) expresses
the centroid C = C̄R = C̄L in the θ-coordinate system (θ(C) = θ) and the aver-
ageM∇F∗Q(η1, . . . , ηn;w) expresses the same centroid in the η-coordinate system

(η(C) = η). In that case of self-dual �at Euclidean geometry, there is an a�ne

2 The squared Euclidean/Mahalanobis divergence are not metric distances since they
fail the triangle inequality.
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transformation relating the θ- and η-coordinate systems:η = Qθ and θ = Q−1η.
As we shall see this is because the underlying geometry is self-dual Euclidean
�at space (M, gEuclidean,∇Euclidean,∇∗Euclidean = ∇Euclidean) and that both dual
connections coincide with the Euclidean connection (i.e., the Levi-Civita con-
nection of the Euclidean metric). In this particular case, the dual coordinate
systems are just related by a�ne transformations.

4 Quasi-arithmetic mixtures and Jensen-Shannon-type

divergences

Consider a quasi-arithmetic meanMf and n probability distributions P1, . . . , Pn
all dominated by a measure µ, and denote by p1 = dP1

dµ , . . . , pn = dPn
dµ their

Radon-Nikodym derivatives. Let us de�ne statistical Mf -mixtures of p1, . . . , pn:

De�nition 4. The Mf -mixture of n densities p1, . . . , pn weighted by w ∈ ∆◦n is
de�ned by

(p1, . . . , pn;w)Mf (x) :=
Mf (p1(x), . . . , pn(x);w)∫

Mf (p1(x), . . . , pn(x);w)dµ(x)
.

The quasi-arithmetic mixture (QAMIX) (p1, . . . , pn;w)Mf generalizes the

ordinary statistical mixture
∑d
i=1 wipi(x) when f(t) = t and Mf = A is

the arithmetic mean. A statistical Mf -mixture can be interpreted as the Mf -
integration of its weighted component densities, the densities pi. The power
mixtures (p1, . . . , pn;w)Mp(x) (including the ordinary and geometric mixtures)
are called α-mixtures in [3] with α(p) = 1−2p (or equivalently p = 1−α

2 ). A nice
characterization of the α-mixtures is that these mixtures are the density cen-
troids of the weighted mixture components with respect to the α-divergences [3]
(proven by calculus of variation):

(p1, . . . , pn;w)Mα = arg min
p

∑
i

wiDα(pi, p),

where Dα denotes the α−divergences [4, 20]. See also the entropic means de�ned
according to f -divergences [6]. Mf -mixtures can also been used to de�ne a gen-
eralization of the Jensen-Shannon divergence [17] between densities p and q as
follows:

D
Mf

JS (p, q) :=
1

2

(
DKL(p : (pq)Mf ) +DKL(q : (pq)Mf )

)
≥ 0, (8)

where DKL(p : q) =
∫
p(x) log p(x)

q(x) dµ(x) is the Kullback-Leibler divergence, and

(pq)Mf := (p, q; 1
2 ,

1
2 )Mf . The ordinary JSD is recovered when f(t) = t and

Mf = A:

DJS(p, q) =
1

2

(
DKL

(
p :

p+ q

2

)
+DKL

(
q :

p+ q

2

))
.
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In general, we may consider quasi-arithmetic paths between densities on the
space P of probability density functions with a common support all dominated
by a reference measure. On P, we can build a parametric statistical model called
a Mf -mixture family of order n as follows:

FMf
p0,p1,...,pn :=

{
(p0, p1, . . . , pn; (θ, 1))Mf : θ ∈ ∆◦n

}
.

In particular, power q-paths have been investigated in [13] with applications in
annealing importance sampling and other Monte Carlo methods.

To conclude, let us give a geometric de�nition of a generalization of the
Jensen-Shannon divergence on P according to an arbitrary a�ne connection [4,
27] ∇:

De�nition 5 (A�ne connection-based ∇-Jensen-Shannon divergence).
Let ∇ be an a�ne connection on the space of densities P, and γ∇(p, q; t) the
geodesic linking density p = γ∇(p, q; 0) to density q = γ∇(p, q; 1). Then the ∇-
Jensen-Shannon divergence is de�ned by:

DJS
∇ (p, q) :=

1

2

(
DKL

(
p : γ∇

(
p, q;

1

2

))
+DKL

(
q : γ∇

(
p, q;

1

2

)))
. (9)

When ∇ = ∇m is chosen as the mixture connection [4], we end up with the
ordinary Jensen-Shannon divergence since γ∇m(p, q; 1

2 ) = p+q
2 . When ∇ = ∇e,

the exponential connection, we get the geometric Jensen-Shannon divergence [17]
since γ∇e(p, q;

1
2 ) = (pq)G is a statistical geometric mixture. We may consider

the α-connections [4] ∇α of parametric or non-parametric statistical models, and
skew the geometric Jensen-Shannon divergence to de�ne the β-skewed ∇α-JSD:

DJS
∇α,β(p, q) = β DKL(p : γ∇α(p, q;β)) + (1− β)DKL(q : γ∇α(p, q;β)). (10)

A longer technical report of this work is available [19].
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