
Research cards

Frank Nielsen

FrankNielsen.github.com

@FrnkNlsn



• Preface

• Part I. High Performance Computing (HPC) with the Message 
Passing Interface (MPI)

• A glance at High Performance Computing (HPC)

• Introduction to MPI: The Message Passing Interface

• Topology of interconnection networks

• Parallel Sorting

• Parallel linear algebra

• The MapReduce paradigm

• Part II. High Performance Computing (HPC) for Data Science (DS)
• Partition-based clustering with k-means

• Hierarchical clustering

• Supervised learning: Practice and theory of classification with the k-NN rule

• Fast approximate optimization in high dimensions with core-sets and fast 
dimension reduction

• Parallel algorithms for graphs

• Appendices
• Written exam

• SLURM: A resource manager & job scheduler on clusters of machines

https://franknielsen.github.io/HPC4DS/index.html@FrnkNlsn

https://franknielsen.github.io/HPC4DS/index.html


Metric tensor g: Raising/lowering vector indices
• Vectors v are geometric objects, independent of any coordinate systems. 

• A vector is written in any basis 𝐵1, …, 𝐵𝑛 using corresponding components:

[𝑣]𝐵1 , [𝑣]𝐵2 ,…,[𝑣]𝐵𝑛
We write the components using column “vectors” for algebra operations

• Vector components in primal basis B are [𝑣]𝐵=
𝑣1

⋮
𝑣𝑑

(contravariant, upper index) and in 

reciprocal basis 𝐵∗ are [𝑣]𝐵∗=

𝑣1
⋮
𝑣𝑑

(covariant, lower index). 

• Metric tensor g is a bilinear form, positive-definite (2-covariant tensor)

𝑔 𝑣,𝑤 = 𝑣,𝑤 𝑔 = [𝑣]𝐵
𝑇 [𝑔]𝐵 [𝑤]𝐵= [𝑣]𝐵

𝑇 [𝑤]𝐵∗=[𝑣]𝐵∗
𝑇 [𝑤]𝐵

• Algebra: [𝑣]𝐵∗= [𝑔]𝐵[𝑣]𝐵 (lowering index) and [𝑣]
𝐵

= [𝑔]𝐵∗[𝑣]𝐵∗ (raising index)

• Algebraic identity: [𝑔]𝐵∗[𝑔]𝐵=I, the identity matrix

An elementary introduction to information geometry, https://arxiv.org/abs/1808.08271



Hyperbolic Voronoi diagram (HVD)
• In Klein ball model, bisectors are hyperplanes clipped by the unit ball

• Klein Voronoi diagram is equivalent to a clipped power diagram

Hyperbolic Voronoi diagrams made easy, https://arxiv.org/abs/0903.3287
Visualizing Hyperbolic Voronoi Diagrams, https://www.youtube.com/watch?v=i9IUzNxeH4o

Klein hyperbolic Voronoi diagram
(all cells non-empty)

Power diagram (additive weights)
(some cells may be empty)

https://arxiv.org/abs/0903.3287
https://www.youtube.com/watch?v=i9IUzNxeH4o


Fast approximation of the Löwner extremal matrix

https://arxiv.org/abs/1604.01592

Visualizations of a positive-definite matrix:
a/Covariance ellipsoids
b/Translated positive-define cone
c/Basis balls of (b)

Finding the extremal matrix of positive-definite matrices 
amount to compute the smallest enclosing ball of cone basis balls

https://arxiv.org/abs/1604.01592


Output-sensitive convex hull construction of 2D objects

Output-Sensitive Convex Hull Algorithms of Planar Convex Objects, IJCGA (1998)

N objects, boundaries intersect pairwise in at most m points
Convex hull of disks (m=2), of ellipses (m=4), etc.
Complexity bounded using Ackermann’s inverse function α

Extend to upper envelopes of functions 
pairwise intersecting in m points



Shape Retrieval Using Hierarchical Total Bregman Soft Clustering

@FrnkNlsn IEEE TPAMI 34, 2012

t-center:

Robust to noise/outliers



Total Bregman divergence and its applications to DTI analysis

@FrnkNlsn

IEEE Transactions on medical imaging, 30(2), 475-483, 2010.



k-MLE: Inferring statistical mixtures a la k-Means

@FrnkNlsn

Online k-MLE for Mixture Modeling with Exponential Families, GSI 2015
On learning statistical mixtures maximizing the complete likelihood, AIP 2014
Hartigan's Method for k-MLE: Mixture Modeling with Wishart Distributions and Its Application to Motion Retrieval, GTI 2014
A New Implementation of k-MLE for Mixture Modeling of Wishart Distributions, GSI 2013
Fast Learning of Gamma Mixture Models with k-MLE, SIMBAD 2013
k-MLE: A fast algorithm for learning statistical mixture models, ICASSP 2012
k-MLE for mixtures of generalized Gaussians, ICPR 2012

Bijection between regular Bregman divergences
and regular (dual) exponential families

Maximum log-likelihood estimate (exp. Family) 
= dual Bregman centroid

Classification Expectation-Maximization (CEM) yields a dual Bregman k-means for mixtures
of exponential families (however, k-MLE is not consistent)

arxiv:1203.5181



Fast Proximity queries for Bregman divergences (incl. KL)

@FrnkNlsn

https://www.lix.polytechnique.fr/~nielsen/BregmanProximity/

E.g., Extended Kullback-Leibler

Bregman ball trees

Space partition induced by 

Bregman vantage point trees

Bregman vantage point trees for efficient nearest Neighbor Queries, ICME 2009 
Tailored Bregman ball trees for effective nearest neighbors, EuroCG 2009

Fast Nearest Neighbour Queries for Bregman divergences

Key property:
Check whether two Bregman spheres 
Intersect or not easily 
(radical hyperplane, space of spheres)

C++ source code

https://www.lix.polytechnique.fr/~nielsen/BregmanProximity/


Optimal Copula Transport: Clustering Time Series

@FrnkNlsn Optimal Copula Transport for Clustering Multivariate Time Series, ICASSP 2016  Arxiv 1509.08144

Distance between random variables (Mutual Information, similarity: correlation coefficient)
Spearman correlation       more resilient to outliers than Pearson correlation 

+ 1 outlier + 1 outlier
Sklar’s theorem:
Copulas C = encode dependence
between marginals F



Riemannian minimum enclosing ball

@FrnkNlsn
On Approximating the Riemannian 1-Center, Comp. Geom. 2013

Approximating Covering and Minimum Enclosing Balls in Hyperbolic Geometry, GSI, 2015

Positive-definite matrices:

Hyperbolic geometry:



Neuromanifolds, Occam’s Razor and Deep Learning

https://arxiv.org/abs/1905.11027

Spectrum density of the Fisher Information Matrix (FIM)

Occam’s razor for Deep Neural Networks (DNNs):
(uniform width M, L layers, N #observations, d: dimension of screen distributions in lightlike neuromanifold)

: parameters of the DNN,       : estimated parameters

Question: Why do DNNs generalize well with huge number of free parameters?

Problem: Generalization error of DNNs is experimentally 
not U-shaped but a double descent risk curve (arxiv 1812.11118)

https://arxiv.org/abs/1905.11027


Relative Fisher Information Matrix (RFIM) and 
Relative Natural Gradient (RNG) for deep learning

Relative Fisher Information and Natural Gradient for Learning Large Modular Models (ICML'17)

The RFIMs of single neuron models, a linear layer, a non-linear layer, a soft-max 
layer, two consecutive layers all have simple closed form solutions

Dynamic 
geometry

@FrnkNlsn

Relative Fisher IM:



Clustering with mixed α-Divergences

On Clustering Histograms with k-Means by Using Mixed α-Divergences. Entropy 16(6): 3273-3301 (2014)

with

Heinz means interpolate
the arithmetic and the

geometric means

K-means (hard/flat clustering) EM (soft/generative clustering)

@FrnkNlsn



Hierarchical mixtures of exponential families

Simplification and hierarchical representations of mixtures of exponential families. Signal Processing 90(12): (2010)

Hierarchical clustering with Bregman sided and symmetrized divergences 

Learning & simplifying
Gaussian mixture models (GMMs)

@FrnkNlsn



Usual centroids based on Kullback-Leibler sided/symmetrized 
divergence

or Fisher-Rao distance (hyperbolic distance)

Learning a mixture by simplifying a kernel density estimator

Model centroids for the simplification of Kernel Density estimators. ICASSP 2012

Original histogram
raw KDE (14400 components) 
simplified mixture (8 components)

Galperin’s model centroid (HG)

Simple model centroid algorithm:
Embed Klein points to points of the Minkowski hyperboloid
Centroid = center of mass c, scaled back to c’ of the hyperboloid
Map back c’  to Klein diskPb: No closed-form FR/SKL  centroids!!!

@FrnkNlsn



Bayesian hypothesis testing:
A geometric characterization of the best error exponent

This geometric characterization yields to an exact closed-form solution in 1D EFs, 
and a simple geodesic bisection search for arbitrary dimension 

An Information-Geometric Characterization of Chernoff Information, IEEE SPL, 2013 (arXiv:1102.2684)

Dually flat Exponential Family Manifold (EFM):
Chernoff information amounts to a Bregman divergence

@FrnkNlsn

Chernoff
Information



Muti-continued fractions

@FrnkNlsn Algorithms on Continued and Multi-continued fractions, 1993

Matrix representation of continued fractions



Bregman chord divergence: Free of gradient!

@FrnkNlsn

Ordinary Bregman divergence
requires gradient calculation:

Bregman chord divergence
uses two extra scalars α and β:

Using linear interpolation notation

No 
gradient!

and

Subfamily of Bregman tangent divergences: 

The Bregman chord divergence, arXiv:1810.09113



@FrnkNlsn

The Jensen chord divergence: Truncated skew Jensen divergences 

A property:
(truncated skew Jensen divergence)

Linear interpolation (LERP):

The chord gap divergence and a generalization of the Bhattacharyya distance, ICASSP 2018



Dual Riemann geodesic distances induced by a 
separable Bregman divergence

Bregman divergence:

Separable Bregman generator:

Riemannian metric tensor:

Riemannian distance (metric):

where

Geodesics:

Legendre conjugate:

Geometry and clustering with metrics derived from separable Bregman divergences, arXiv:1810.10770



Upper bounding the differential entropy (of mixtures)
Idea: compute the differential entropy of a MaxEnt exponential family with 
given sufficient statistics in closed form. Any other distribution has less 
entropy for the same moment expectations. Applies to statistical mixtures.

MaxEnt Upper Bounds for the Differential Entropy of Univariate 
Continuous Distributions, IEEE SPL 2017, arxiv:1612.02954

Absolute Monomial Exponential Family (AMEF):

with log-normalizer

@FrnkNlsn

Legendre-Fenchel conjugate



@FrnkNlsn

Matrix Bregman divergences

Mining Matrix Data with Bregman Matrix Divergences for Portfolio Selection, 2013
Bregman–Schatten p-divergences…

For real symmetric matrices:

where F is  a strictly convex and differentiable generator

• Squared Froebenius distance for
• von Neumann divergence for 

• Log-det divergence for  



@FrnkNlsn

Curved Mahalanobis distances (Cayley-Klein geometry) 

Usual squared Mahalanobis distance (Bregman divergence with dually flat geometry) 

where Q is positive-definite matrix

Classification with mixtures of curved Mahalanobis metrics, ICIP 2016.

Curved Mahalanobis distance (centered at µ and of curvature κ):  

Some curved Mahalanobis balls (Mahalanobis in blue)



@FrnkNlsn

Hölder projective divergences (incl. Cauchy-Schwarz div.) 

On Hölder projective divergences, Entropy, 2017 (arXiv:1701.03916)

For α>0, define conjugate exponents: 

For α ,γ>0, define the family of Hölder projective divergences:

When α=β=γ=2, we get the Cauchy-Schwarz divergence:

A divergence D is projective when 



@FrnkNlsn

Gradient and Hessian on a manifold (M,g,∇)

Directional derivative of f at point x in direction of vector v:

Gradient (requires metric tensor g): unique vector                    satisfying

Hessian (requires an affine connection, usually Levi-Civita metric conn. )

Property:

https://arxiv.org/abs/1808.08271

https://arxiv.org/abs/1808.08271


Video stippling/video pointillism (CG)

@FrnkNlsn Video stippling, ACIVS 2011. arXiv:1011.6049

https://www.youtube.com/watch?v=O97MrPsISNk
Video

https://www.youtube.com/watch?v=O97MrPsISNk


Matching image superpixels by Earth mover distance 

@FrnkNlsn Earth mover distance on superpixels, ICIP 2010

Color 
consistent 
(matching)

Not color 
consistent

(no matching)

Optimal transport between superpixels
including topological constraints when
a segmentation tree is available

Superpixels by image segmentation:
• Quickshift (mean shift)
• Statistical Region Merging (SRM)



α-Embedding

α-representations of the Fisher Information Matrix
Usually, the Fisher Information Matrix (FIM) is introduced in  two ways:

α-likelihood function

α-representation of the FIM:

Corresponds to a basis choice in the tangent space (α-base)
@FrnkNlsn https://tinyurl.com/yyukx86o


