

1> Treat the training dataset as a source generating training examples.

Method	Uncertainty Description	Calibration AUROC ↑	OOD AUROC ImageNet-O ↑	Accuracy ↑	# Trainable Parameters
Deep Ensemble of 5	Gibbs softmax entropy	0.861 ± 0.0004	0.642 ± 0.001	$78.4 \pm 0.06\%$	117,672,960
DAB with fine-tuned ResNet-50 (ours) DAB with pre-trained ResNet-50 (ours)	Statistical distance (KL) Statistical distance (KL)	0.868 ± 0.0008 0.866 ± 0.0003	0.743 ± 0.004 0.732 ± 0.004	$\begin{array}{c} 76.1 \pm 0.02\% \\ 74.71 \pm 0.09\% \end{array}$	36,612,328 13,077,736
	DAB outperforms ensembles at predicting misclassifications! DAB can better distinguish out-of-distribution images.			pa	lany fewer

A Rate-Distortion View of Uncertainty Quantification

Ifigeneia Apostolopoulou, Benjamin Eysenbach, Frank Nielsen, Artur Dubrawski

2> Map each datapoint to a *distribution* through a stochastic encoder.

from the codebook: uncertainty(x_{test}) = $\mathbb{E}[D(p(z \mid x_{\text{test}}; \theta), q_{\kappa}(z; \phi))]$

DAB's performance on ImageNet 1-K

3> The codebook contains the centroids of the encoders in terms of a statistical distance. Uncertainty is quantified by the expected distance Each centroid progressively attracts datapoints of the same class.

Machine Learning, 2020.

https://github.com/ifiaposto/Distance_Aware_Bottleneck

References

[1] Alemi, A. A., Fischer, I., Dillon, J. V., and Murphy, K. Deep variational information bottleneck. In International Conference on Learning Representations, 2017. [2] Alemi, A. A., Fischer, I., and Dillon, J. V. Uncertainty in the variational information bottleneck. arXiv preprint arXiv:1807.00906, 2018

[3] Liu, J., Lin, Z., Padhy, S., Tran, D., Bedrax Weiss, T., and Lakshminarayanan, B. Simple and principled uncertainty estimation with deterministic deep learning via distance awareness. Advances in Neural Information Processing Systems, 2020. [4] Banerjee, A., Merugu, S., Dhillon, I. S., Ghosh, J., and Lafferty, J. Clustering with Bregman divergences. Journal of Machine Learning Research, 2005.

[5] Van Amersfoort, J., Smith, L., Teh, Y. W., and Gal, Y. Uncertainty estimation using a single deep deterministic neural network. In International Conference on