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Abstract

We correct and extend the results presented in [12].

1 Dissimilarities, dual centroids, and dual information radii

Let D(P : Q) denote the dissimilarity between two points P and @ of a space G such that D(P :
Q) > 0 with equality if and only if P = Q). By analogy with the notion of Fréchet barycenters
in metric spaces [7], we define the D-barycenters or D-centroid Cp(P) of a weighted point set
P ={P,...,P,} with respect to D as

Cp(P) —argmmel (P : X), (1)

where w; > 0 and """ ; w; = 1 (i.e., w belongs to the (n — 1)-dimensional standard simplex A,_1).
The centroids are special cases of barycenters obtained for the uniform weighting w; = % Notice
that Cp(P) is generally a subset of points of G, and may not necessarily exist nor be unique. For
example, the centroid of two antipodal points on the unit Euclidean sphere is a great circle. In
Riemannian geometry, other notions of barycenters have been defined [I]: Karcher local barycenters,
exponential barycenters, etc.

Since D may be asymmetric D(P : Q) # D(Q : P) (oriented dissimilarity, hence the delimiter
notation “”), we define the dual dissimilarity D*(P : Q) := D(Q : P), and the dual D-barycenter
or left-sided D-barycenter:

n

Cp*(P) := argmin » w;D(X : F;), (2)
XeG i1

= arg mel% Z w; D*(P; : X), (3)
i=1

= Cp-(P). (4)

Notice that the dual of the dual dissimilarity is the original (primal) dissimilarity: D** = D
(involutive property of duality).



Let Cp(P) be the primal D-barycenter (right-sided D-barycenter) and Cp*(P) be the dual
D-barycenter (left-sided D-barycenter). The dual D-barycenter with respect to D amounts to the
(primal) D*-barycenter for the dual dissimilarity D*. When D is the squared Euclidean distance,
both primal and dual centroids coincide to the center of mass.

The (primal) information radius [13] is defined by

=Y wD(P;:C), CeCp(P), (5)
while the dual information radius is defined by

In general, we have Ip*(P) # Ip+(P) because the left-sided and right-sided centroids may not
coincide. (They coincide by default when the dissimilarity is symmetric.) The information radius
for the squared Euclidean distance represents the variance of the point set.

2 Bregman centroids and Bregman information

Let F(0) be a strictly convex and differentiable real-valued function for § € ©, where © c RP
denotes the open parameter space. We define the Bregman divergence [6] with respect to generator
F as:

Br(0:0'):=F(@)—F@)—(0—-60)"VF(@®), (7)
for 6,0" € ©.

Bregman divergences are canonical smooth dissimilarities of dually flat space in information ge-
ometry [2,[8]: That is, we can build a canonical Bregman divergence from any dually flat space, and
a Bregman divergence yields a dually flat space [3]. In a dually flat space (or Bregman manifold [9]),
the dissimilarity between two points P and @ is expressed by

Dp(P: Q) := Br(0(P): 0(Q)), (8)

where 6(-) is a global (affine) coordinate system used to define the potential function F(0), see [2,§].
The dual divergence amounts to a dual Bregman divergence Bp+ as follows:

Dp(P: Q)= D(Q: P)=Br(0(Q) : 0(P)) = Br-(n(P) : 1(Q)) = Dp-(P : Q), 9)

where F* is the Legendre-Fenchel convex conjugate [9], and n(f) = VF(0) the dual affine global
coordinate system [2], 8]. We can introduce the Legendre-Fenchel divergence from the dual potential
functions F' and F* as follows:

Ap(6 1) = F(8) + F*(of) — 0T of >0 (10)

with equality if and only if ' = VF(), or equivalently § = VFEF*(r/).
Thus, in a Bregman manifold, we have the dual divergences that can be expressed using the dual
coordinate systems either by Bregman divergences or by Legendre-Fenchel divergences as follows:

Dp(P:@Q) = Br(0(P):0(Q)) = Ap(6(P) : n(Q)) =: Dr*(Q: P), (11)
Drp*(P:Q) = Bp-(n(P):1(Q)) = Ap-(n(P) : 0(Q)) =: Dr(Q : P). (12)

[\)



Theorem 1 Theorem 3.1 and Theorem 3.2 of [12] Let 0; = 6(P;) and n; = n(P;) be the primal
and dual coordinates of point P; for P, € P ={Py,...,P,}. Let 0 = Yo wilb and =1 win;
denote the center of mass in the primal 0-coordinate system and dual n-coordinate system, respec-
tively. The right-sided Bregman centroid Cp,(P) and the left-sided Bregman centroid Cp,*(P)
exist and are both unique, and we have 0(Cp,(P)) = 0 and n(Cp,*(P)) = 7.

Proof: We have

Cpp(P) = arg%é%szDpP X), (13)
= arggleingiAF(ﬂi:n(X)), (14)
= arg min B(X) sz )) + F*(n(X)) = 0 n(X). (15)

A point X € Cp,.(P) if and only if V,x) =0: V,F*(n(X)) = 6. That is:
n(X) = (VF)71(0) = (VF*)~ ZwNF (m:)) (16)

The right-sided centroid is unique since the Hessian VZ(X)E(X) is V2F*(n(X)), and V2F* is
positive-definite (F* is a strictly convex conjugate). The right-sided centroid is expressed in the
f-coordinate system as 0(Cp,(P)) = (VF*)(n(Cp,(P))) = (VF*)(VF*)~1(0)) = 0.
The proof for the left-sided centroid is similar, and we have 0(Cp,*(P)) = (VF)"(7) =
(VE)"L(3, wiVF(6;)) so that Cp,.*(P) expressed in the n-coordinate system is . O
To summarize, we have:

f-coordinate system n-coordinate system
Right-sided centroid Cp,, (P) 0=>" wob; (VF) YR w VF* ()
Left-sided centroid Cp,*(P) (VEF) L3, wiVF(6;)) n=> i wmn

In term of Bregman divergences, the right-sided Bregman centroid is the center of mass [4]. The
Bregman information radius is called Bregman information in [4]. It was shown in [I1], 5] that the
only symmetrized Bregman divergences are squared Mahalanobis divergences. Thus the left-sided
centroid and right-sided Bregman centroids coincide only for squared Mahalanobis divergences, and
the dual Bregman information radii differ in the general case.

Corollary 1 Correct  Corollary 3.8 of [12] The information radius Ip,(P) =
Jp(b1,...,00; w1, ..., wy,) where Jp denotes the Jensen diversity index [10):

JF(Hl, e ,Hn; Wi, .. - ,wn) = szF(Qz) - F (Z wz&) Z 0. (17)
=1 =1

The dual information radius Ip,*(P) = Ip,~(P) = Jp«(m,...,Mns w1, ..., wy) differs from the
primal information radius except when Dg is a squared Mahalanobis divergence.



Thus we have:

Ipy (P)

=1 =1
=1 =1

Example 1 When F(0) = %HTQH for a positive-definite matriz QQ > 0, we have the convex con-
Jugate F*(n) = %’I’]TQ_IT] (with Q= = 0). We have n; = Q'0; and n; = Qb;. It follows that
0 =>" wb = Q' and i = Y0 wim; = QO. Thus we check that the information radii
coincide when dealing with squared Mahalanobis Bregman divergences:

Ipe(P) = ZW%GIQ@—%@TQ@, (20)
=1
= 3 1 —1,0\T -1, _1 1T -1
= ;%(Q ) Q) — Q') Q) (21)
= ZwmiTQ’lm—%ﬁQ’lﬁ, (22)
=1
= Ip..(P)=1Ip;(P). (23)

Let @ = LL" be the Cholesky decomposition of a positive-definite matrix Q = 0. It is well-
known that the Mahalanobis distance Mg amounts to the Euclidean distance on affinely trans-
formed points:

M3(0,6") = AOTQAS, (24)
= AOTLL' A, (25)
= MXL'6,LT¢)=|L"o—-L"¢|>? (26)

where A0 =60 — 0.
The squared Mahalanobis distance Mé does not satisfy the triangle inequality, but the Maha-
lanobis distance Mg is a metric distance:

Ma(0.0') = \/ (0" — 0)TQ(8' — 0) = VAGTQAG.

Conversely, we can transform the Euclidean distance as an equivalent Mahalanobis distance on
affinely transformed points:

Mo((L")™10,(L7)710") = M1(6,6') = |6 — ']
Thus the Euclidean distance can be rewritten as the following equivalent Mahalanobis distances:
Mg, ((Ly)~'0,(L3)~"0") = Mo, (L{) "6, (L{)~'6") = ||§ — ¢'|| = M;(6,6")

It follows that we can transform one Mahalanobis distance Mg, into another Mahalanobis
distance Mg, by a linear transformation:

Mg, (0,0") = Mg, ((L{)'Ly 0,(L{) 'Ly ¢").
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Observe that when @ = I, we have L1 = I, and we recover Mq,(0,0') = M;(Ly0,Ly0") =

Ly 6 — Ly 0’|, as expected.

For any lower triangular matrix, we have (L™1)" = (LT)7L.

T
Let L1 = Lo ((LlT) 1) . Notice that Lis = LQLI_I. Therefore we have Mq,(6,60") =

MQ1 (LE@, LIQG,)‘

Another short proof consists in writing for symmetric positive-definite (SPD) matrix @ =

L"L = 0 that

3

Mq(61,602) = M(LT01, LT 05) < M(61,02) = Mo((L") 101, (L") ~'6,).
Then we have for two SPD matrices Q1 = L]—Ll = 0and Q2 = L;—Lg > 0:
Mg, (61,682) = My(L{ 61, L{ 62) = Mq,((L3 )" L{ 61, (Ly ) "L{ 62).
Thus we have

Mg, (01,02) = Mq,((Lg ) 'L{ 61, (Ly )" L{ 62).

The symmetrized Bregman centroids
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