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Abstract

We correct and extend the results presented in [12].

1 Dissimilarities, dual centroids, and dual information radii

Let D(P : Q) denote the dissimilarity between two points P and Q of a space G such that D(P :
Q) ≥ 0 with equality if and only if P = Q. By analogy with the notion of Fréchet barycenters
in metric spaces [7], we define the D-barycenters or D-centroid CD(P) of a weighted point set
P = {P1, . . . , Pn} with respect to D as

CD(P) := arg min
X∈G

n∑
i=1

wiD(Pi : X), (1)

where wi > 0 and
∑n

i=1wi = 1 (i.e., w belongs to the (n− 1)-dimensional standard simplex ∆n−1).
The centroids are special cases of barycenters obtained for the uniform weighting wi = 1

n . Notice
that CD(P) is generally a subset of points of G, and may not necessarily exist nor be unique. For
example, the centroid of two antipodal points on the unit Euclidean sphere is a great circle. In
Riemannian geometry, other notions of barycenters have been defined [1]: Karcher local barycenters,
exponential barycenters, etc.

Since D may be asymmetric D(P : Q) 6= D(Q : P ) (oriented dissimilarity, hence the delimiter
notation “:”), we define the dual dissimilarity D∗(P : Q) := D(Q : P ), and the dual D-barycenter
or left-sided D-barycenter:

CD
∗(P) := arg min

X∈G

n∑
i=1

wiD(X : Pi), (2)

= arg min
X∈G

n∑
i=1

wiD
∗(Pi : X), (3)

= CD∗(P). (4)

Notice that the dual of the dual dissimilarity is the original (primal) dissimilarity: D∗∗ = D
(involutive property of duality).
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Let CD(P) be the primal D-barycenter (right-sided D-barycenter) and CD
∗(P) be the dual

D-barycenter (left-sided D-barycenter). The dual D-barycenter with respect to D amounts to the
(primal) D∗-barycenter for the dual dissimilarity D∗. When D is the squared Euclidean distance,
both primal and dual centroids coincide to the center of mass.

The (primal) information radius [13] is defined by

ID(P) :=

n∑
i=1

wiD(Pi : C), C ∈ CD(P), (5)

while the dual information radius is defined by

ID
∗(P) :=

n∑
i=1

wiD(C : Pi), C ∈ CD∗(P). (6)

In general, we have ID
∗(P) 6= ID∗(P) because the left-sided and right-sided centroids may not

coincide. (They coincide by default when the dissimilarity is symmetric.) The information radius
for the squared Euclidean distance represents the variance of the point set.

2 Bregman centroids and Bregman information

Let F (θ) be a strictly convex and differentiable real-valued function for θ ∈ Θ, where Θ ⊂ RD
denotes the open parameter space. We define the Bregman divergence [6] with respect to generator
F as:

BF (θ : θ′) := F (θ)− F (θ′)− (θ − θ′)>∇F (θ′), (7)

for θ, θ′ ∈ Θ.
Bregman divergences are canonical smooth dissimilarities of dually flat space in information ge-

ometry [2, 8]: That is, we can build a canonical Bregman divergence from any dually flat space, and
a Bregman divergence yields a dually flat space [3]. In a dually flat space (or Bregman manifold [9]),
the dissimilarity between two points P and Q is expressed by

DF (P : Q) := BF (θ(P ) : θ(Q)), (8)

where θ(·) is a global (affine) coordinate system used to define the potential function F (θ), see [2, 8].
The dual divergence amounts to a dual Bregman divergence BF ∗ as follows:

D∗F (P : Q) = D(Q : P ) = BF (θ(Q) : θ(P )) = BF ∗(η(P ) : η(Q)) = DF ∗(P : Q), (9)

where F ∗ is the Legendre-Fenchel convex conjugate [9], and η(θ) = ∇F (θ) the dual affine global
coordinate system [2, 8]. We can introduce the Legendre-Fenchel divergence from the dual potential
functions F and F ∗ as follows:

AF (θ : η′) := F (θ) + F ∗(η′)− θ>η′ ≥ 0 (10)

with equality if and only if η′ = ∇F (θ), or equivalently θ = ∇F ∗(η′).
Thus, in a Bregman manifold, we have the dual divergences that can be expressed using the dual

coordinate systems either by Bregman divergences or by Legendre-Fenchel divergences as follows:

DF (P : Q) = BF (θ(P ) : θ(Q)) = AF (θ(P ) : η(Q)) =: DF
∗(Q : P ), (11)

DF
∗(P : Q) = BF ∗(η(P ) : η(Q)) = AF ∗(η(P ) : θ(Q)) =: DF (Q : P ). (12)
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Theorem 1 Theorem 3.1 and Theorem 3.2 of [12] Let θi = θ(Pi) and ηi = η(Pi) be the primal
and dual coordinates of point Pi for Pi ∈ P = {P1, . . . , Pn}. Let θ̄ =

∑n
i=1wiθi and η̄ =

∑n
i=1wiηi

denote the center of mass in the primal θ-coordinate system and dual η-coordinate system, respec-
tively. The right-sided Bregman centroid CDF

(P) and the left-sided Bregman centroid CDF
∗(P)

exist and are both unique, and we have θ(CDF
(P)) = θ̄ and η(CDF

∗(P)) = η̄.

Proof: We have

CDF
(P) = arg min

X∈G

n∑
i=1

wiDF (Pi : X), (13)

= arg min
X∈G

n∑
i=1

wiAF (θi : η(X)), (14)

= arg min
X∈G

E(X) = (
n∑
i=1

wiF (θi)) + F ∗(η(X))− θ̄>η(X). (15)

A point X ∈ CDF
(P) if and only if ∇η(X) = 0: ∇ηF ∗(η(X)) = θ̄. That is:

η(X) = (∇F ∗)−1(θ̄) = (∇F ∗)−1(
n∑
i=1

wi∇F ∗(ηi)). (16)

The right-sided centroid is unique since the Hessian ∇2
η(X)E(X) is ∇2F ∗(η(X)), and ∇2F ∗ is

positive-definite (F ∗ is a strictly convex conjugate). The right-sided centroid is expressed in the
θ-coordinate system as θ(CDF

(P)) = (∇F ∗)(η(CDF
(P))) = (∇F ∗)((∇F ∗)−1(θ̄)) = θ̄.

The proof for the left-sided centroid is similar, and we have θ(CDF
∗(P)) = (∇F )−1(η̄) =

(∇F )−1(
∑n

i=1wi∇F (θi)) so that CDF
∗(P) expressed in the η-coordinate system is η̄. �

To summarize, we have:

θ-coordinate system η-coordinate system

Right-sided centroid CDF
(P) θ̄ =

∑n
i=1wiθi (∇F ∗)−1(

∑n
i=1wi∇F ∗(ηi))

Left-sided centroid CDF
∗(P) (∇F )−1(

∑n
i=1wi∇F (θi)) η̄ =

∑n
i=1wiηi

In term of Bregman divergences, the right-sided Bregman centroid is the center of mass [4]. The
Bregman information radius is called Bregman information in [4]. It was shown in [11, 5] that the
only symmetrized Bregman divergences are squared Mahalanobis divergences. Thus the left-sided
centroid and right-sided Bregman centroids coincide only for squared Mahalanobis divergences, and
the dual Bregman information radii differ in the general case.

Corollary 1 Correct Corollary 3.3 of [12] The information radius IDF
(P) =

JF (θ1, . . . , θn;w1, . . . , wn) where JF denotes the Jensen diversity index [10]:

JF (θ1, . . . , θn;w1, . . . , wn) :=

n∑
i=1

wiF (θi)− F

(
n∑
i=1

wiθi

)
≥ 0. (17)

The dual information radius IDF
∗(P) = IDF

∗(P) = JF ∗(η1, . . . , ηn;w1, . . . , wn) differs from the
primal information radius except when DF is a squared Mahalanobis divergence.
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Thus we have:

IDF
(P) =

n∑
i=1

wiF (θi)− F

(
n∑
i=1

wiθi

)
, (18)

ID∗
F

(P) =
n∑
i=1

wiF
∗(ηi)− F ∗

(
n∑
i=1

wiηi

)
. (19)

Example 1 When F (θ) = 1
2θ
>Qθ for a positive-definite matrix Q � 0, we have the convex con-

jugate F ∗(η) = 1
2η
>Q−1η (with Q−1 � 0). We have ηi = Q−1θi and ηi = Qθi. It follows that

θ̄ =
∑n

i=1wiθi = Q−1η̄ and η̄ =
∑n

i=1wiηi = Qθ̄. Thus we check that the information radii
coincide when dealing with squared Mahalanobis Bregman divergences:

IDF
(P) =

n∑
i=1

wi
1

2
θ>i Qθi −

1

2
θ̄>Qθ̄, (20)

=

n∑
i=1

wi
1

2
(Q−1ηi)

>Q(Q−1ηi)−
1

2
(Q−1η̄)>Q(Q−1η̄), (21)

=
n∑
i=1

wiη
>
i Q
−1ηi −

1

2
η̄Q−1η̄, (22)

= IDF∗ (P) = ID∗
F

(P). (23)

Let Q = LL> be the Cholesky decomposition of a positive-definite matrix Q � 0. It is well-
known that the Mahalanobis distance MQ amounts to the Euclidean distance on affinely trans-
formed points:

M2
Q(θ, θ′) = ∆θ>Q∆θ, (24)

= ∆θ>LL>∆θ, (25)

= M2
I (L>θ, L>θ′) = ‖L>θ − L>θ′‖2, (26)

where ∆θ = θ′ − θ.
The squared Mahalanobis distance M2

Q does not satisfy the triangle inequality, but the Maha-
lanobis distance MQ is a metric distance:

MQ(θ, θ′) =
√

(θ′ − θ)>Q(θ′ − θ) =
√

∆θ>Q∆θ.

Conversely, we can transform the Euclidean distance as an equivalent Mahalanobis distance on
affinely transformed points:

MQ((L>)−1θ, (L>)−1θ′) = MI(θ, θ
′) = ‖θ − θ′‖.

Thus the Euclidean distance can be rewritten as the following equivalent Mahalanobis distances:

MQ2((L>2 )−1θ, (L>2 )−1θ′) = MQ1((L>1 )−1θ, (L>1 )−1θ′) = ‖θ − θ′‖ = MI(θ, θ
′)

It follows that we can transform one Mahalanobis distance MQ2 into another Mahalanobis
distance MQ1 by a linear transformation:

MQ2(θ, θ′) = MQ1((L>1 )−1L>2 θ, (L
>
1 )−1L>2 θ

′).
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Observe that when Q1 = I, we have L1 = I, and we recover MQ2(θ, θ′) = MI(L
>
2 θ, L

>
2 θ
′) =

‖L>2 θ − L>2 θ′‖, as expected.
For any lower triangular matrix, we have (L−1)> = (L>)−1.

Let L12 = L2

((
L>1
)−1)>

. Notice that L12 = L2L
−1
1 . Therefore we have MQ2(θ, θ′) =

MQ1(L>12θ, L
>
12θ
′).

Another short proof consists in writing for symmetric positive-definite (SPD) matrix Q =
L>L � 0 that

MQ(θ1, θ2) = MI(L
>θ1, L

>θ2)⇔MI(θ1, θ2) = MQ((L>)−1θ1, ((L
>)−1θ2).

Then we have for two SPD matrices Q1 = L>1 L1 � 0 and Q2 = L>2 L2 � 0:

MQ1(θ1, θ2) = MI(L
>
1 θ1, L

>
1 θ2) = MQ2((L>2 )−1L>1 θ1, (L

>
2 )−1L>1 θ2).

Thus we have
MQ1(θ1, θ2) = MQ2((L>2 )−1L>1 θ1, (L

>
2 )−1L>1 θ2).

3 The symmetrized Bregman centroids

Acknowledgments: We kindly thank Professor Gavin Brown of the University of Manchester
(UK) for communications on this topic.
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