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ABSTRACT

A set of planar objects is said to be of type m if the convex hull of any two objects

has its size bounded by 2m. In this paper, we present an algorithm based on the

marriage-before-conquest paradigm to compute the convex hull of a set of n planar

convex objects of �xed typem. The algorithm is output-sensitive, i.e. its time complexity

depends on the size h of the computed convex hull. The main ingredient of this algorithm

is a linear method to �nd a bridge, i.e. a facet of the convex hull intersected by a given

line. We obtain an O(n�(h;m) log h)-time convex hull algorithm for planar objects.

Here �(h; 2) = O(1) and �(h;m) is an extremely slowly growing function. As a direct

consequence, we can compute in optimal �(n log h) time the convex hull of disks, convex

homothets, non-overlapping objects. The method described in this paper also applies to

compute lower envelopes of functions. In particular, we obtain an optimal�(n logh)-time

algorithm to compute the upper envelope of line segments.

Keywords: Computational geometry, Convex hull, Upper Envelope, Output-sensitive

algorithms, Marriage before conquest.

1. Introduction

Convex hull has been of main interest for years in computational geometry.

Many articles have considered the case of points where general paradigms have been

used or purposely developed. Worst-case optimal space and time algorithms have

been established for sets of points in dimension d

1;2;3

. However, the convex hull of n

points in general position in a d-dimensional space ranges from the d-simplex with
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2

d+1

faces to maximal polytopes of size O(n

b

d

2

c

) (see Ref.4,5). We are interested in

designing algorithms whose time complexity depends on both the input and output

sizes: the so-called output-sensitive algorithms.

Optimal output-sensitive algorithms for points are known only in dimensions

2 and 3 by the time being. D.G. Kirkpatrick and R. Seidel

6;7

gave the �rst op�

timal output-sensitive algorithm in dimension 2. Their algorithm is based on a

new paradigm: marriage-before-conquest. H. Edelsbrunner and W. Shi

8

gave an

O(n log

2

h)-time algorithm to compute the h facets of the convex hull of n points

of E

3

using the same paradigm. K.L. Clarkson and P.W. Shor

9

described an out�

put-sensitive randomized algorithm for computing the convex hull of a set of points

in dimension 3. The expected complexity of their algorithm is optimal. Their algo�

rithm uses as a basic primitive the deterministic algorithm of D.G. Kirkpatrick and

R. Seidel and was derandomized later on by B. Chazelle and J. Matou²ek

10

.

In higher dimensions (d � 4), for a long time the best known solution was the

algorithm of R. Seidel

11

which after an O(n

2

)-time preprocessing step , �nds the

facets of a convex hull in a shelling order at a logarithmic cost per facet. The

preprocessing step was reduced later

12;13

on to O

�

n

2�

2

b

d

2

c+1

+�

�

for any � > 0.

Recently, T. Chan et al.

14

have investigated the case of points in four dimensions,

achieving an O((n + h) log

2

h)-time algorithm for computing the convex hull of a

set of n points where h denotes the output-size. In higher dimensions, T. Chan

15

realized many improvements on the convex hull computations and related problems,

combining the gift-wrapping method of D.R. Chand and S.S. Kapur

16

and G.F.

Swart

17

with recent results on data structures for ray shooting queries in polytopes

(developed by P.K. Agarwal et J. Matou²ek

18

and re�ned by J. Matou²ek and O.

Schwarzkopf

19

).

Computing the convex hull of a set of curved objects has been much less investi�

gated. Computing the convex hull of a single planar object bounded by curves has

been carefully studied

20;21;22

and several authors have generalized linear-time algo�

rithms for computing the convex hull of a simple planar polygon

23;24;25;26

. In the

case of a family of n planar disks, optimal �(n logn)-time convex hull algorithms

have been designed

27;28

.

We consider the following problem: given a collection O = fO

1

; :::; O

n

g of n

convex objects, compute in an output-sensitive manner the convex hull CH(O), i.e.

the smallest convex object containing O. In the general case, the usual way to

compute the convex hull of O is to compute the lower and the upper envelopes

of O and to consider the unique object bounded by these envelopes. Then, one

can apply to this single planar object one of the convex hull algorithms mentioned

above. A classical output-sensitive algorithm to compute the convex hull CH(O)

is Jarvis's march

29

which runs in O(nh) where h denotes the output-size. In this

paper, we generalize the marriage-before-conquest approach of R. Seidel and D.G

Kirkpatrick

7

in the case of planar objects.

Independently, T. Chan

15

gave a simple algorithm for computing the convex hull

of a set of planar points. His algorithm can be adapted to handle the case of convex
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a bitangent segment

an arc

O

The convex hull CH(O)

Figure 1: A convex hull of disks (m = 2).

objects (although this is not described in Ref.15) within the same time bounds.

Nevertheless, our algorithm is di�erent and is interesting in its own right. It relies

on an O(n log h+�h)-time algorithm to compute the convex hull of n objects of �xed

type m such that any object can be colored with a value in f1; :::; �g and objects of

a same color do not intersect pairwise

a

, where h denotes the output-size. Thus, we

obtain immediately an optimal �(n logh) algorithm if we consider that the objects

satisfy the hard-sphere model

30

or have only a few intersections (in that case, our

algorithm is simpler than T. Chan's one

15

). Moreover, we solve the problem of

computing in linear time a bridge, i.e. a facet of the convex hull intersecting a given

oriented line. In the general case, we �rst transform our original set of objects O

into another set T such that CH(O) = CH(T ) with the objects in T being colored

with at most � = d

n

h

e objects and apply our basic algorithm.

Computing the convex hull of general planar convex objects di�ers from the case

of points because the convex hull of two points p

1

and p

2

is the straight segment

[p

1

p

2

] whereas the complexity of the convex hull of two planar convex objects O

i

and O

j

depends on the nature of these objects. We call arc a maximal piece of the

boundary of CH(O) that is included in the boundary @O

i

of an object O

i

of O.

The boundary of CH(O) is an alternating sequence of arcs and bitangent segments

(Figure 1). In the following, the arcs of CH(O) and its bitangent segments are called

facets. In this paper, we shall consider sets of convex objects with the property

that the convex hull of any two objects has bounded complexity (if the objects

are non-convex and have �xed descriptive complexity, we can �rst compute their

a

In particular, if any object intersect at most  others then � �  + 1.
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convex hulls in linear time). More precisely, a set of objects O is said to be of type

m if the convex hull of any two objects of O has at most m arcs (or 2m facets).

Let jCH(O)j denote the size of the convex hull CH(O), i.e. the number of facets

(convex arcs and bitangent segments) of its boundary @CH(O). Then, O is of type

m if 8 i; j 2 [1; n]; jCH(O

i

; O

j

)j � 2m. For example, points have type 1, disks,

convex homothets and non-overlapping objects have type 2, ellipsis have type 4,

etc. Note that if O is of type m then the boundaries of any two convex objects of

O cannot intersect in more than m points. Moreover, if q denotes the maximum

number of intersection points between the boundaries of two distinct convex objects

of O, then m = maxf2; qg. Moreover, if the objects are bounded by closed convex

curves then m is even.

Throughout this paper, we suppose that the type of set O is �xed. Moreover,

each object in O is assumed to have a bounded descriptive size (for instance, the

boundary of each object is a curve of bounded degree) : in particular, this means

that we can �nd in constant time the two supporting lines of an object with a given

slope. Furthermore, we assume that the convex hull of two objects in O can be

computed in constant time, where the constant depends on the type m.

This paper is organized as follows:

In section 2, we recall the complexity of the convex hull of n objects of type m.

In section 3, we �rst extend to the case of a set of convex objects of type m, the

algorithm of D.G. Kirkpatrick and R. Seidel

6;7

to compute a bridge, i.e. the facet

of the convex hull intersecting a given oriented line (subsection 3.1). Our algorithm

is based on the searching-and-pruning paradigm and achieve an optimal �(n) time

complexity to compute a bridge of a set of n convex objects of type m. Then, we

present the scheme of the marriage-before-conquest approach (subsection 3.2). This

scheme amounts to computing a bridge at a given oriented line, uses this bridge

to �lter the objects and to divide the problem into two independent sub-problems

which are recursively solved. Finally, we re�ne the marriage-before-conquest algo�

rithm in the case of a set partitionned into k subsets of non-overlapping objects,

i.e. a set O = [

k

i=1

P

i

where each P

i

; i 2 [1; k], is a collection of non-overlapping

objects (subsection 3.3). The time complexity of the algorithm is O(n log h+ hk).

This algorithm is used as a basic primitive in the �nal algorithm. We also derive

an O(n log h+ �h)-time algorithm to compute the convex hull of n objects of �xed

type m where h denotes the output-size and � is the maximal number of objects

that an object can intersect.

In section 4, we describe the algorithm in the general case. We design an

O(n�(h;m) log h)-time convex hull algorithm where n is the number of objects,

h denotes the output-size and �(h;m) is a very slowly growing function related to

the maximum length �(n;m) of a (n;m)-Davenport-Schinzel sequence

31;32;33

. More

precisely, �(h; 2) = O(1) and �(h;m) = O(2

�(h)

c

m

) if m > 2, where c

m

is an integer

depending on m and �(�) is the functional inverse of Ackermann's function. The

algorithm is close to optimal with respect to both the input and output sizes since


(n logh) is a lower bound

7

.
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.

In section 5, we adapt the method for computing upper envelopes of functions

intersecting pairwise in at most m points and obtain an O(n�(h;m+2) logh)-time

algorithm. We improve slightly the algorithm in case of k-intersecting generalized

segments, i.e. partially de�ned functions that intersect pairwise in at most k points.

In that case, we obtain an O(n�(h; k + 1) logh)-time algorithm which is �(n logh)

for line segments.

Finally, in section 6, we conclude and give several guidelines for future research.

2. Complexity of the Convex Hull of Convex Objects of Type m

In this section, we �rst examine the complexity of the convex hull CH(O) where

O is a set of planar convex objects of type m.

Let us consider p

+

the point with coordinates (0;+1) (resp. p

�

the point

with coordinates (0;�1)). Let us call upper convex hull (respectively lower convex

hull) of O the convex hull CH

+

(O) = CH(O; p

�

) (resp. CH

�

(O) = CH(O; p

+

)).

We denote by O

+

i

(resp. O

�

i

) the object CH

+

(O

i

; p

�

) (resp. CH

�

(O

i

; p

+

)) (see

Figure 2). Let O

+

= fO

+

i

jO

i

2 Og and O

�

= fO

�

i

jO

i

2 Og. Then, CH

+

(O) =

CH(O

+

), CH

�

(O) = CH(O

�

) and CH(O) = CH(O

+

) \ CH(O

�

).

We bound the complexity of the convex hull of convex objects of type m as

follows:

Theorem 1 In the worst-case, the complexity of the convex hull of n planar convex

objects of type m is bounded by 4�(n;m) where �(n;m) is the maximum length of

an (n;m)-Davenport-Schinzel sequence

31;32;33

.

Proof. Since the boundaries @CH(O

+

) and @CH(O

�

) of respectively CH(O

+

)

and CH(O

+

) coincides at their extremities, the size jCH(O)j of the convex hull is at

most jCH(O

+

)j+ jCH(O

�

)j. We therefore focus on the upper bound of jCH(O

+

)j.

Since the convex hull CH(O

+

) is an alternating sequence of bitangent segments and

arcs, we count the maximal number of arcs that can appear on the boundary of

CH(O

+

), i.e. @CH(O

+

).

To each object O

+

i

of O

+

we associate its supporting function f

i

(�) de�ned as

follows: f

i

(�) is de�ned over [0; �] as the y-coordinate of the intersection point p

i

(�)
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Figure 3: Duality between the boundary of the upper convex hull @CH

+

(O) and

the upper envelope E

F

of F .

Table 1: Lower and upper bounds of �(n;m). �(n) is the functional inverse of

Ackermann's function.

m

/

�(n;m) Lower Bound 
 Upper Bound O

1 n n

2 2n� 1 2n� 1

3 
(n� �(n)) O(n� �(n))

4 
(n� 2

�(n)

) O(n� 2

�(n)

)

m = 2s+ 1 
(n� 2

O(�(n)

s�1

)

) O(n� �(n)

O(�(n)

s�1

)

)

m = 2s+ 2 
(n� 2

O(�(n)

s

)

) O(n� 2

O(�(n)

s

)

)

of the y-axis � with the supporting line of O

+

i

with slope � (see Figure 3). We get a

collection F = ff

i

j1 � i � ng of n functions that are totally de�ned over the range

[0; �]. As it is well known from duality, the upper convex hull CH(O

+

) is isomorph

to the upper envelope E

F

of F , i.e. the pointwise maximum of the f

i

's. An arc of

E

F

corresponds to an arc of @CH(O

+

), a vertex of E

F

corresponds to a bitangent

segment of @CH(O

+

).

Since O

+

is of type m, two supporting functions f

i

and f

j

intersect in at most

m points.

Therefore, the number of arcs of @CH(O

+

) is bounded by the maximal length

�(n;m) of an (n;m)-Davenport-Schinzel sequence

31;32;33

. Since the upper convex

hull is an alternating sequence of arcs and bitangent segments, we get jCH(O

+

)j �

2�(n;m). It follows that jCH(O)j � 4�(n;m). 2

Computing upper envelopes of real functions (de�ned over R) that can mutually

intersect in at most q points is a problem which has been extensively studied

34;35;36

.

A divide-and-conquer approach yields anO(�(n; q) logn)-time complexity algorithm.

6



Therefore, one can compute the upper envelope of the `dual' functions f

i

's de�ned

by objects in O

+

in time O(�(n;m) log n) if set O

+

is of type m. Alternatively,

the convex hull CH

+

(O) can also be computed using the randomized incremen�

tal construction of Clarkson

37

and Clarkson and Shor

38

in expected running time

~

O(�(n;m) logn).

3. Computing the Convex Hull of Colored Families of Convex Objects

In this section, we �rst show in subsection 3.1 how to compute in linear time a

bridge, i.e. a facet of the convex hull intersected by a given ray. Then, we present in

subsection 3.2 the marriage-before-conquest paradigm applied to the case of objects.

Finally, we re�ne the algorithm in subsection 3.3 in the case of colored families of

convex objects, i.e. families that can be partitionned into monochromatic subsets

of pairwise non-intersecting objects.

3.1. Bridge of a Convex Hull

3.1.1. De�nition and notations

The bridge of O at � is the unique facet of CH

+

(O) that is intersected by �.

The bridge at � is either an arc or a bitangent segment of CH(O). This section is

devoted to the computation of the bridge at an oriented line � of a set of planar

convex objects of �xed type m. The bridge facet is easily determined if one knows

the line which supports CH(O) at the point � \ @CH(O) where � intersects the

boundary of CH(O). Indeed, if this line is a supporting line for at least two objects

in O then the bridge is a bitangent segment whereas if this line is a supporting line

of a single object O

i

2 O then the bridge is an arc of CH(O) included in @O

i

. In

both cases, the two endpoints of the bridge can be found in linear time once this

supporting line is known. Thus, we focus on the determination of the supporting

line of CH(O) at point � \ @CH(O). Hereafter, this line is called the supporting

line of the bridge at �.

Computing the supporting line of the bridge at � of n convex objects is a

generalized linear program

39;40;41;42

and can therefore be computed by a randomized

algorithm in expected

~

O(n) time. Moreover, we can use the derandomized algorithm

of B. Chazelle and J. Matou�sek

43

in order to obtain a linear deterministic algorithm.

Hereafter we give a more direct algorithm to compute in linear time the bridge at �.

D.G. Kirkpatrick and R. Seidel

7

gave a deterministic optimal �(n) algorithm that

computes a bridge for a set of n points using a searching-and-pruning procedure.

We extend this algorithm to convex objects of �xed type m.

In order to follow the steps of this searching-and-pruning method, we �rst extend

the main theorem of D.G. Kirkpatrick and R. Seidel

7

's algorithm for computing the

bridge of points to the case of convex objects that can be separated by a line parallel

to �. Then, we introduce the vertical decomposition in order to obtain convenient

sets of convex objects. We �nally give the overall algorithm and analyze its time

complexity.

7



3.1.2. The case of convex objects

Without loss of generality, consider that the direction of � is the direction of

the y-axis, called the vertical axis. We denote by x(p) the abscissa of point p.

Kirkpatrick and Seidel proved the following lemma for a set O of points:

Lemma 2 (3.2, pp. 291 Ref.7) Let p; q be a pair of points of O with x(p) < x(q),

let s

b

be the slope of the supporting line of the bridge of O at � and let s be the

slope of the straight line through p and q. If s > s

b

then p cannot be a point of the

bridge of CH(O) at �. If s < s

b

then q cannot be a point of the bridge at �.

Two objects O

1

and O

2

are said to be x-separated if they can be separated by a

line parallel to �. Note that x-separated objects can be ordered along the x-axis.

In the following, we note x(O) the x-range of an object O, i.e. the projection of O

onto the x-axis. Let (O

1

; O

2

) be a pair of x-separated objects. If O

1

is to the left

of an oriented vertical line separating O

1

and O

2

then we note x(O

1

) < x(O

2

) and

O

1

(resp. O

2

) is called the left (resp. right) object of the pair (O

1

; O

2

). An object

O 2 O is said to participate to the bridge at � if the supporting line of CH

+

(O) at

� \ @CH

+

(O) is a supporting line of object O. We extend lemma 2 to the case of

x-separated objects. Observe that if O

1

and O

2

are a pair of x-separated object, the

boundary of the upper convex hull CH

+

(O

1

; O

2

) has a unique bitangent segment.

Lemma 3 Let (O

1

; O

2

) be a pair of x-separated objects with x(O

1

) < x(O

2

), let

s be the slope of the unique bitangent segment of @CH

+

(O

1

; O

2

) and let s

b

be the

slope of the bridge of O at �. If s > s

b

then the left object O

1

of the pair cannot

participate to the bridge at �. If s < s

b

then the right object O

2

of the pair cannot

participate to the bridge at �.

Proof. We only give the proof in case of s > s

b

(the other case is obtained by

symmetric considerations). Let I be the intersection point between a separating

line �

0

parallel to � and the a�ne hull L of the unique bitangent segment of

@CH

+

(O

1

; O

2

) (see Figure 4). Let s be the slope of L and de�ne L

0

as the line

passing through I with slope s

b

. Let L

1

(s

b

) be the tangent line to O

1

with slope s

b

.

L

1

(s

b

) and L

0

are parallel lines (and can therefore be ordered along �

0

). Because

of the convexity of O

1

, if s > s

b

then y(L

0

\�

0

) = y(L \�

0

) � y(L

1

(s

b

) \�

0

) and

L

1

(s

b

) is below L

0

. But the contact point T

2

(s) = L \ O

2

is strictly above L

0

if

s > s

b

. Therefore, point T

2

(s) is above L

1

(s

b

) so that O

1

cannot participate to the

bridge at � 2

3.1.3. Vertical decomposition

The vertical decomposition will give rise to a set of x-separated convex objects.

Let O = fO

1

; :::; O

n

g be a set of n planar convex objects of type m and CH

+

(O)

its upper convex hull. We decompose this upper convex hull by striping CH

+

(O).

To stripe CH

+

(O), we draw through each vertex of @CH

+

(O) a line parallel to �.

These parallel lines induce a decomposition of each object O

i

of O into sub-objects,

called tiny objects in the following (see Figure 5). We only keep the tiny objects

whose boundary participates to the boundary of the convex hull @O. Note that

each tiny object is de�ned from a single object and two vertical lines, and that two

8
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O
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L

1

(s

b

)

L

0

with slope s

b

x(O

1

) x(O

2

)

T

2

(s)

Figure 4: Discarding O

1

when s > s

b

.

O

i

O

j

�

Tiny objects of a cluster (O

i

; O

j

)

Tiny objects removed directly from the set of candidates

Figure 5: Vertical decomposition of a pair of convex objects of type 2.

tiny objects arising from this decomposition are x-separated.

3.1.4. Algorithm

Let L be the line which supports CH(O) at point � \ @CH

+

(O). Line L is

a supporting line for some of the objects in O. Our goal is to select from O the

objects that touch L.

We pair up the convex objects of O into pairs (O

i

; O

j

). For each pair (O

i

; O

j

),

we �rst compute CH

+

(O

i

; O

j

), the upper convex hull of O

i

and O

j

and apply the

vertical decomposition to CH

+

(O

i

; O

j

). We discard from this decomposition all the

tiny objects that do not have an arc of @CH

+

(O

i

; O

j

) on their boundaries. Indeed,

as these tiny objects do not appear on the boundary of CH

+

(O

i

; O

j

), they also do

not appear on the boundary of CH

+

(O) and therefore cannot participate to any

bridge of CH

+

(O) (Figure 1).
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We call cluster the set of remaining tiny objects of a pair. As each pair is of

type at most m since O is of type m, we can deduce that there are at most (m+1)

convex tiny objects in a cluster. Then, we pair up all the tiny objects within a

cluster into at most b

m+1

2

c tiny pairs. Note that we pair up only the tiny objects

within a cluster since, as they are x-separated, they have type 2 whereas two tiny

objects of di�erent clusters have type m. In the following, we shall use lemma 3 to

reduce the number of tiny objects in the clusters. As the slope s

b

of the supporting

line of CH(O) at � \ @CH

+

(O) is of course unknown, the trick is to resolve tests

like s < s

b

or s > s

b

using transitivity. A cluster is said to be reduced if it has only

one remaining tiny object. The algorithm consists in an initial step where we pair

up the objects in order to get non-reduced clusters and several rounds of selecting

and clustering where we eliminate, round after round, the tiny objects. We describe

the algorithm below:

Initial step. We pair up the objects and compute for each pair its vertical decom�

position. This step gives rise to clusters of tiny objects. If an object O

i

of

a pair (O

i

; O

j

) is included in O

j

then the cluster generated by this pair is

reduced. In that case, we discard O

i

and pair O

j

again until all clusters are

non-reduced.

Selecting and Clustering. A round:

� Selecting.

� Pair up the tiny objects inside each cluster.

� Compute the median s

m

of the slopes of the bitangent segments of

pairs of tiny objects (use the median algorithm of

Blum et al.

44

).

� Let O

0

be the subset of objects which contribute to the current

collection of tiny objects. Then, �nd the supporting line L(s

m

)

of CH

+

(O

0

) with slope s

m

and locate the contact points L(s

m

) \

CH

+

(O

0

) with respect to �. To �nd the supporting line of CH

+

(O

0

)

with a given slope s

m

, we �nd the object(s) which maximize

max

i=1::jO

0

j

fy

i

� s

m

x

i

g where point (x

i

; y

i

) is the contact point of

the supporting line of O

i

with slope s

m

. In general, there is one or

two such objects and therefore one or two contact points but there

can be possibly more.

� Discard tiny objects:

� If there are contact points located in both sides of � then s

m

=

s

b

. The supporting line of CH(O) at � \ @CH

+

(O) is fully

determined by a tiny pair whose bitangent segment has slope

s

m

.

� If all the contact points are located at the left side of � then

s

m

> s

b

. We consider all tiny pairs with slope s � s

m

and

discard the left tiny object t

1

of these pairs.

10



� If all the contact points are located at the right side of � then

s

m

< s

b

. We consider all tiny pairs with slope s � s

m

and

discard the right tiny object t

2

of these pairs.

� Clustering. This stage is required in order to obtain a set of non-reduced

clusters for the next round. For each reduced cluster, we consider the

original object O 2 O which gave rise to the single tiny object of this

cluster. We pair up these objects and compute for each pair its vertical

decomposition. This step gives rise to new clusters. If an object O

i

of

a pair (O

i

; O

j

) is included in O

j

then the cluster generated by this pair

is reduced. In that case, we discard O

i

and pair O

j

again until all clus�

ters are non-reduced. In the next round, we consider these new clusters

together with the non-reduced clusters remaining from the last selecting

step.

The algorithm halts whenever it �nds a tiny pair whose slope equals the slope

s

b

of the supporting line of the bridge at � or if it remains only one tiny object.

In the former case, the bridge is a bitangent segment and we �nd its two endpoints

in linear time. In the latter case, there are two subcases: either the remaining tiny

object does not intersect � and CH(O) \ � = ; or it de�nes the object whose

boundary contains the bridge arc. In the latter subcase, the endpoints of the arc

can be found in linear time.

3.1.5. Complexity analysis

Theorem 4 The above algorithm computes the bridge of a set of n planar convex

objects of �xed type m in optimal �(n) time and storage.

Proof. Once we know the supporting line of the bridge at �, we can determine,

in linear time, the nature of the bridge (arc or segment) and compute its two

endpoints in linear time for a �xed type m. We therefore focus on the analysis of

the searching-and-pruning algorithm.

Let l and k be respectively the number of tiny objects and the number of clusters

(they are all non-reduced) present at the beginning of some round of the selecting

and clustering steps. Then, we denote by c(l; k) the cost of the algorithm from that

stage. Let l

0

and k

0

be respectively the number of tiny objects and the number of

non-reduced clusters at the end of that round, i.e. after the clustering step. We

have the following recursive equation:

c(l; k) =

�

O(1) if k � 1

�l + �(k � k

0

) + c(l

0

; k

0

) otherwise,

(1)

where � and � = �

m

are some constants (� depending on m).

Let r denote the number of clusters reduced during the selecting phase. Since

we pair up the r reduced clusters to create new non-reduced clusters, we have

k

0

� k � r + b

r

2

c. In the second part of equation (1), �l is the cost of the selecting

phase, �

r

2

� �(k� k

0

) the cost of the clustering phase of the round and c(l

0

; k

0

) the

11



total cost of the remaining rounds. Each vertical decomposition of the convex hull

of two objects costs �

m

= � if type m is �xed.

If k = 1 there is only one cluster of tiny objects. We can compute the convex

hull of the at most two objects which give rise to the set of its tiny objects in time

O(1) = 

m

=  if type m is �xed.

Let S

1

(jS

1

j = l

0

1

) be the set of remaining tiny objects after the selecting phase

of the current round and S

2

(jS

2

j = l

0

2

) the set of tiny objects created during the

clustering phase. Let S

0

(jS

0

j = l

0

j) be the set of tiny objects at the beginning of

the next round, i.e. S

0

� S

1

[ S

2

. Clearly, we have l

0

� l

0

1

+ l

0

2

.

We prove that l

0

1

�

5

6

l:

Assume that among the k clusters present at the beginning of the current round,

k

o

clusters have an odd number of tiny objects (say the �rst k

o

clusters) and thus

remain with an unpaired tiny object after the pairing of tiny objects while the

(k � k

o

) other clusters have all their tiny objects paired. Finally, denote by a

i

the

number of pairs of tiny objects in the i-th cluster. We have the following equation:

l =

k

o

X

i=1

(2a

i

+ 1) +

k

X

i=k

o

+1

2a

i

=

�

k

X

i=1

2a

i

�

+ k

o

(2)

The selecting process removes a tiny object from half of the tiny pairs, so that

l

0

1

� l �

1

2

P

k

i=1

a

i

. Using equation (2), we obtain l

0

1

�

3

4

l +

k

o

4

. As the number of

tiny objects l is at least 2k + k

o

and k

o

ranges over [0; k], we have l � 3k

o

. Thus,

l

0

1

�

5l

6

.

Now, consider the number of created tiny objects during the clustering step.

Clearly, l

0

2

� (k� k

0

)(m+1). l

0

is therefore upper-bounded by

5

6

l+(k� k

0

)(m+1).

Then, it follows by induction on vector (k; l) ordered lexicographically that

c(l; k) � �l + (� + �(m+ 1))k +  for any � � 6�.

Initially, l � d

n

2

e(m + 1) and k � d

n

2

e so that the complexity of all the rounds

of the selecting and clustering step is upper bounded by O(n) for any �xed type m.

The cost of the initial step is also O(n). Thus we obtain an �(n)-time algorithm

to compute the bridge 2

3.2. Marriage-Before-Conquest Algorithm

In this section, we present the marriage-before-conquest strategy to compute

the convex hull CH(O) of a set of n convex objects O. We consider w.l.o.g. the

computation of the upper convex hull since the boundary of CH(O) is obtained in

O(1) time from the boundaries of CH

+

(O) and CH

�

(O). Each object in O has

two supporting lines parallel to the y-axis, called walls. Each wall is oriented as

the y-axis. Let W be the set of walls and denote by jWj = w = 2n its cardinality.

Let R be a range, i.e. an interval on the x-axis. We de�ne a slab as the portion

of the euclidean plane E

2

between two lines parallel to �. The upper convex hull

CH

+

(O) can be described as an x-ordered sequence of facets. The following algo�

rithm MarriageBeforeConquest(W ;O;R) computes a subsequence MBC(W ;O;R)

of the facets of CH

+

(O) included in the slab B = R� (�1;+1).

12



Termination. If w = 0 thenMBC(W ;O;R) = ;. ReturnMBC(W ;O;R).

Divide. Find the median W

m

of the walls W . Split W into two balanced subsets

W

0

1

= fW 2 Wjx(W ) � x(W

m

)g and W

0

2

= fW 2 Wjx(W ) � x(W

m

)g.

Merge. Compute the bridge b at the median oriented line W

m

.

Filter. Let W

1

(respectively W

2

) be the subset of the walls of W

0

1

(resp. W

0

2

)

that do not intersect b. Let w

1

and w

2

denote respectively the cardinalities

of sets W

1

and W

2

. Let x

+

b

and x

�

b

be respectively the abscissæ of the right

and left endpoints of b. Let R

1

= R \ (�1; x

�

b

), B

1

= R

1

� (�1;+1),

R

2

= R\ (x

+

b

;+1) and B

2

= R

2

� (�1;+1). Let O

1

(resp. O

2

) be the set

of objects in O that intersect slab B

1

(resp. slab B

2

). Compute W

1

, W

2

, R

1

,

R

2

, B

1

, B

2

, O

1

and O

2

. Let n

1

= jO

1

j and n

2

= jO

2

j.

Conquest. Call recursively MarriageBeforeConquest(W

1

;O

1

;R

1

) and

MarriageBeforeConquest(W

2

;O

2

;R

2

) and return the ordered sequence of facets

MBC(W

1

;O

1

;R

1

) [ fbg [MBC(W

2

;O

2

;R

2

).

We denote by c(n;w; h) the complexity of the algorithmMarriageBeforeConquest

running inside range R if there are w walls in B, n objects intersecting B and h

computed facets of CH

+

(O) in B. Each computed facet is intersected by at least

one wall of W , so that h � jWj. We obtain the following equation:

c(n;w; h) =

�

O(n) if h � 1

c(n

1

; w

1

; h

1

) + c(n

2

; w

2

; h

2

) +O(n) otherwise

(3)

The algorithm ensures that w

1

+ w

2

� w and w

1

; w

2

� d

w

2

e but it does not

control n

1

nor n

2

(n

1

; n

2

� n) so that its worst-case running time is O(nh). At

the end, we are left with an x-ordered alternating sequence of computed facets

and empty slabs (i.e. slabs that do not contain any wall of W). We can �nd the

whole upper convex hull using Jarvis's algorithm inside each empty terminal slab.

In the following section, we study a special case where we can bound the number of

objects that participate to the upper convex hull inside a slab (parameter n

1

and

n

2

of equation (3)). We will use this �special� case as a basic primitive in the �nal

algorithm.

3.3. The Case of a Non-Overlapping Partition

Let O be a set of n objects of �xed type m. If we know that a partition ]

k

i=1

P

i

of set O of �xed type m into k subsets such that each subset P

i

, for i 2 [1; k], is a

set of non-overlapping convex objects then we can derive an O(n log h+ hk)-time

complexity algorithm to �nd the convex hull of O. This result holds, for example

if O is a set of non-overlapping convex objects, since in that case k = 1 and m = 2.

Let B be a vertical slab where we want to compute the upper convex hull. Among

the objects of O intersecting B, we distinguish two mutually exclusive categories:

Category 1: The objects that have a wall inside B.

13



Category 2: The objects that intersect B but do not have a wall inside B: these

objects are called the spanning objects hereafter.

AlgorithmMarriageBeforeConquest is slightly modi�ed, taking into account these

two categories of objects inside each slab B (with associated range R), as follows:

� We bound the number of objects to consider in slab B by selecting among the

spanning objects, at most one object of each family P

i

. Indeed, R is included

in the x-range of each spanning object. Thus, the spanning objects which

belong to a given family P

i

can be ordered along any vertical line included in

B and only the topmost object can contribute to the upper convex hull in B.

� We stop the recursive calls as soon as w � k and run Jarvis's march in each

resulting slab on the set of objects O

B

relevant for this slab. We have jO

B

j �

2k since there are at most k spanning objects and k objects of category 1.

This Jarvis's march is initialized from the computed facet which intersects

the rightmost vertical line limiting B and stopped when the leftmost vertical

line limiting B is reached.

Theorem 5 Let O be a set of n planar convex objects of �xed type m partitionned

into k subsets of non-overlapping convex objects, then the convex hull of O can be

computed in O(n log h+ hk) time, where h is the size of the convex hull of O.

Proof. Let c(n;w; h) denote the complexity of the above algorithm. We have:

c(n;w; h) =

�

O(hk) if w � k

c(n

1

; w

1

; h

1

) + c(n

2

; w

2

; h

2

) +O(n) otherwise

(4)

with w

1

+w

2

� w, w

1

; w

2

� d

w

2

e, n

1

� w

1

+k and n

2

� w

2

+k since we keep, in

each sub-slab B

1

;B

2

, at most k spanning objects and there are at most w

1

objects

(resp. w

2

objects) that have a wall in slab B

1

(resp. B

2

).

We consider the recursive time complexity equation (4) and link parameters n

and w using the inequality: n � w+k; thus c(n;w; h) � c(w+k; w; h) and from now

on, we simply note c(w; h) for c(w+ k; w; h). Bounding n by w+ k in equation (4),

we obtain:

c(w; h) =

�

�hk if w � k

c(w

1

; h

1

) + c(w

2

; h

2

) + �(w + k) otherwise

(5)

where � and � are some constants.

Note that w

1

� d

w

2

e, w

2

� d

w

2

e and h = h

1

+ h

2

+1. We prove by induction on

w that c(w; h) � (w log h+ kh) for a suitable constant :

� If w � k then c(w; h) = �kh by equation (5). So that c(w; h) � (w logh+kh)

if  � �.

� Suppose that c(w

0

; h) = (w

0

logh+ kh) for 0 � w

0

< w and consider c(w; h)

with w > k. Using equation (5), it follows that:

c(w; h) = (w

1

logh

1

+ kh

1

+ w

2

logh

2

+ kh

2

) + �(w + k)
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with w

1

; w

2

�

w

2

and h

1

+ h

2

+ 1 = h. Note that log(h

1

h

2

) is maximized for

h

1

= h

2

=

h�1

2

, thus:

c(w; h) � (

w

2

log

h

2

4

+ kh) + �(w + k);

c(w; h) � (w logh+ kh� w) + �(w + k):

But k < w by hypothesis, so that

c(w; h) � (w logh+ kh) + (2� � )w;

and c(w; h) � (w logh+ kh) for suitable  � 2�.

This proves that c(w; h) � (w logh + kh) for constant  = maxf2�; �g. Initially,

w = 2n (each of the n initial objects has two walls) so that the complexity of the

algorithm is O(n log h+ kh). 2

As a direct consequence, we obtain a �(n logh)-time algorithm for computing

the convex hull of non-overlapping convex objects. Note that our algorithm requires

to know the partition of O into subsets of non-overlapping objects. We can de�ne

for a family of n objects its intersection graph G as follows: for each object O

i

2 O

we create a node and two di�erent nodes are linked i� their corresponding objects

intersect. If � is the maximum degree of the nodes of G, we know from the graph

theory that there exists a partition of O into p subsets of non-overlapping objects

such that p � � + 1. We can slightly modify our algorithm in order to take into

account the paramater � without knowing a partition into subsets of non-overlapping

objects: choose a vertical line inside the slab and select from the spanning objects

the object O that has the uppermost intersection point with that line. Then, we

discard all the spanning objects that do not intersect O (this means that we only

keep the spanning objects intersecting O). It is trivial to prove that all the spanning

objects that do not intersect O are below O and therefore cannot participate to the

upper convex hull. Thus, we obtain an O(n log h+ �h)-time algorithm to compute

the upper convex hull of n objects of �xed type m where � is the maximal number of

intersection of any object with the others. For example, we can compute the convex

hull of n hard-disks

30

in �(n logh) (a family of disks in the hard-sphere model has

the property that each disk intersects at most O(1) others, i.e. � = O(1)). We also

obtain an optimal �(n logh)-time algorithm if � � O(

n logn

�(n;m)

).

Note that the above algorithm computes the upper convex hull inside each ter�

minal slab using Jarvis's march. If we skip this last phase of the algorithm, we

are left with a subsequence of the facets of the convex hull. There is a terminal

slab intersecting at most 2k objects between each pair of consecutive facets in the

subsequence. Then, the algorithm is called PartialMBC and its complexity is still

O(n log h+ kh) but h is, here, the number of computed bridges (and not the total

number of facets of the upper convex hull).
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4. The General Case

In this section, we �rst present a convex hull algorithm assuming we know a good

estimate h

e

of the output-size h. To obtain a good estimate of the output-size, we

have to compare the size h of the convex hull with some given value p; we show

in section 4:2 how to perform such comparisons. The �nal algorithm is given in

section 4:3.

4.1. Given an Estimate of the Output-Size

Let h

e

be an estimate of the output-size h = jCH

+

(O)j. The algorithm includes

two steps: the �rst step computes from O a set T of objects partitionned into

non-overlapping subsets such that CH

+

(O) = CH

+

(T ). Then, in a second step, we

apply the marriage-before-conquest algorithm of section 3.3 on T . We describe the

algorithm below:

Grouping. Group the n objects into d

n

h

e

e groups of size h

e

. For each group, we

compute the vertical decomposition of the convex hull of its objects. Thus, we

obtain from the groups a set T of O(d

n

h

e

e�(h

e

;m)) tiny objects partitionned

into d

n

h

e

e subsets of at most �(h

e

;m) non-overlapping tiny objects.

Marriage-before-conquest. Let W be the set of walls corresponding to the tiny

objects of T . Let R be the x-range (�1;+1).

Return MarriageBeforeConquest(W ; T ;R) (see algorithm section 5).

Let us now analyze the complexity of the two steps:

Grouping. Computing the vertical decomposition of the upper convex hull of a

group of h

e

objects requires O(�(h

e

;m) logh

e

) time: we �rst compute the up�

per envelope of the h

e

objects by a divide-and-conquer algorithm and then run

a walk-like convex hull algorithm on the resulting upper envelope

20

. The up�

per envelope has worst-case size �(h

e

;m). Thus, the time required to compute

the vertical decomposition of a group is O(�(h

e

;m) logh

e

). Since there are

d

n

h

e

e groups, the total time complexity of this �rst step is O(n

�(h

e

;m)

h

e

logh

e

).

Marriage-before-conquest. We run the marriage-before-conquest algorithm of

section 3.3 onto the set of O(

n�(h

e

;m)

h

e

) tiny objects partitionned into d

n

h

e

e sub�

sets of non-overlapping objects. From the complexity analysis of section 3.3,

this step requires O(n

�(h

e

;m)

h

e

logh+

nh

h

e

) time.

The total time complexity of the algorithm is therefore

O

�

n

�(h

e

;m)

h

e

(logh

e

+ log h) +

nh

h

e

�

. Thus, if h

e

= h then the time required to com�

pute the convex hull CH

+

(O) is O(n

�(h;m)

h

logh).

4.2. Comparing the Output-Size with a Given Value

In order to �nd a good estimate of h, we will need to determine if our current

estimate (say p) is good (this means that p roughly equals to h) or not, i.e. to

answer tests like p > h , p = h or p < h.
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Lemma 6 There exists a deterministic algorithm that given an integer p, answers

whether h > p or not in O(n

�(p;m)

p

log p) time.

Proof. We design an algorithm which does not di�er too much from the

algorithm of section 4.1: the idea is to group the objects into d

n

p

e groups of p objects

and then run the marriage-before-conquest algorithm PartialMBC on the d

n

p

e subsets

of non-overlapping tiny objects resulting from the vertical decomposition of each

group. Finally, we bound the number of facets computed by Jarvis's marches inside

the terminal slabs. More precisely, we run Jarvis's march inside each �terminal�

slab (a slab with at most

n

p

walls) until we have computed a total of minfp; hg

facets. We describe the algorithm below:

Let a = 0 (a denotes the number of computed facets).

Grouping. Group the n objects into d

n

p

e groups of size p and compute the vertical

decompositions of their convex hull. We obtain a set T of O(

n�(p;m)

p

) tiny

objects partitionned into d

n

p

e non-overlapping subsets.

Marriage-before-conquest. Apply algorithm PartialMBC on the set T until each

slab has less than d

n

p

e walls, incrementing a each time we compute a bridge.

If a > p stop and return yes, i.e. h > p.

Jarvis's march. Fill the terminal slabs by running Jarvis's march inside each slab

on a set of O(

n

p

) objects (at most d

n

p

e spanning objects and d

n

p

e objects that

have a wall inside the slab), incrementing a and testing if a > p each time we

compute a new facet. If a > p at some step then we stop the algorithm and

return yes, i.e. h > p.

Default case. At this stage, we have computed the whole upper convex hull and

a = h, the number of computed facets is less or equal to p. We return no.

The overall cost of the grouping step is O(n

�(p;m)

p

log p) as in section 4:1. The

cost of the marriage-before-conquest algorithm is bounded by O(n

�(p;m)

p

log p) since

we stop the recursion process if the slab has less than d

n

p

e walls. Indeed, we split

into two balanced parts the walls of the tiny objects of T at each recursive call of

the procedure. So that dividing the number of walls inside each slab by a factor

�(p;m) amounts to computing at most �(p;m) bridge facets. Thus, the cost of run�

ning PartialMBC is bounded by O(n

�(p;m)

p

log�(p;m))+n

�(p;m)

p

= O(n

�(p;m)

p

log p)

since log�(p;m) = O(log p). Let c(n; p) denote the time complexity of this al�

gorithm. Then, c(n; p) = O(n

�(p;m)

p

log p) + O(

n

p

a

0

) where a

0

is the number of

computed facets during the Jarvis's march (a

0

� a). Clearly, a

0

� p so that

c(n; p) = O(n

�(p;m)

p

log p). This proves the lemma. 2

4.3. The Overall Algorithm

The scheme of the algorithm is to �nd a good estimate h

e

of h, that is an

estimate such that h � h

e

< h

2

, and to run the algorithm of section 4:1 with that

estimate. The �nal algorithm is described below:

17



Initializing. Let i = 0 and p = 2

2

0

= 2.

Estimating. While (p < h) do p  minfn; p

2

g (this means that i  i + 1 and

p = 2

2

i

)

Computing. Compute the upper convex hull using p = h

e

= 2

2

i

(note that h

2

>

p � h).

Note that we use the algorithm of section 6:2 to perform tests like p < h in the

while-loop.

Let c(n; h) be the cost of the algorithm, we obtain:

c(n; h) = O(1) +O

0

@

dlog log he

X

i=0

n

�(2

2

i

;m)

2

2

i

2

i

1

A

+O

�

n

�(h

e

;m)

h

e

logh

e

�

:

Let �(p;m) be an upper bound of the ratio

�(p;m)

p

that satis�es �(p

2

;m) =

O(�(p;m)) like �(p;m) � O(2

�(p)

c

m

) with c

m

an integer depending on m (this

upper-bound is deduced from the maximal length of (n; s)-Davenport-Schinzel se�

quences, see Table 1). We bound c(n; h) as follows:

c(n; h) � O

0

@

n�(h;m)

dlog log he

X

i=0

2

i

1

A

+O

�

n�(h

2

;m) logh

2

�

;

c(n; h) = O(n�(h;m) log h):

This yields the desired upper-bound c(n; h) = O(n�(h;m) log h).

Theorem 7 There exists a deterministic algorithm that computes the upper convex

hull of n planar convex objects of �xed type m in time O(n�(h;m) log h) using

O(n�(h;m)) storage.

This bound is very close to optimal since 
(n logh) is a lower bound

7

. In case

of convex objects of type 2 (like disks, convex homothets, non-overlapping objects,

etc.), the algorithm is truly optimal since

�(h;2)

h

= O(1) (see Ref.45). Ifm > 2 we do

not know if our algorithm is optimal. We cannot reach the 
(n logh) lower bound

(proved in Ref.7) with this method. Indeed, when grouping the objects into groups

and computing their vertical decomposition, we create a set of tiny objects which

is slightly supra-linear with respect to the original set of objects. This remark gives

rise to the problem of the lower bound as soon asm > 2. Is 
(n

�(h;m)

h

log h) a better

lower bound for the convex hull problem? Can we group the objects in a better

way so that the number of tiny objects obtained from the convex decomposition of

the groups is less than O(n

�(p;m)

p

) for a p-grouping?

In the following section, we show how this method can be used to compute upper

envelopes of functions and line segments. In the latter case, we can improve the

grouping step of the inputs so that we achieve an optimal �(n logh)-time algorithm

in the case of line segments.
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5. Computing Upper Envelopes

Let F = ff

1

; :::; f

n

g be a collection of n mono-variate, possibly partially de�ned,

functions, all algebraic of some constant maximum degree. We denote by E

F

its

upper envelope, i.e. the pointwise maximum of the f

i

's:

E

F

(x) = max

i2f1;:::;ng

ff

i

(x)g;

where f

i

(x) is the value of the function f

i

at abscissa x or �1 if x does not belong

to the domain of de�nition of f

i

. Throughout this paper, we will use the term

function for the mathematical object itself or its graph. Thus, in term of graph,

the upper envelope of functions can be seen as the part of the graphs of the f

i

's

visible from viewpoint (0;+1). If the functions are partially de�ned, then the

observer (which stands at point (0;+1)) may see the point (0;�1), i.e. there

exists vertical rays emanating from (0;+1) that do not collide with the function

graphs. In order to unify the de�nition of the mathematical object upper envelope

in case of partially de�ned functions, we add an extra function f

�1

(�) such that

f

�1

(x) = �1;8 x 2 R. Thus,

E

F

(x) = max

i2f1;:::;ng

ff

i

(x); f

�1

(x)g = max

i2f1;:::;ng

ff

i

(x);�1g:

The upper envelope is a sequence of maximal visible portions of the original func�

tions. Hereafter, we call facet of the upper envelope each maximal visible portion

of the original functions. A facet is fully determined by the function whose graph

coincides with that facet, and its two endpoints. The size of the upper envelope E

F

of F , denoted by jE

F

j, is the number of facets of the upper envelope.

Set F is said of type m if any two functions of F intersect in at most m points.

Line segments are of type 1, parabolæ are of type 2, ... Since the functions have a

bounded descriptive size (algebraic functions of �xed degree), F is of �xed type m.

We can use the theory of Davenport-Schinzel

31;32;33;46

to bound the complexity

of the upper envelopeE

F

ofF . The maximal length �(n;m) of an (n;m)-Davenport-

Schinzel sequence is almost linear in n for �xed m

31;32;33

. It is well-known that the

size of the upper envelope of n functions totally de�ned over R (resp. partially

de�ned over R) is bounded by �(n;m+ 1) (resp. �(n;m+ 3)).

For example, line segments are partially de�ned functions intersecting pairwise

in at most one point. Thus, the size of the upper envelope of n line segments is

�(n; 3) = O(n�(n)). Here �(n) is the extremely slowly growing functional inverse of

Ackermann's function

36

. This bound is tight: M. Sharir and A. Wiernik

36

built a set

of n line segments such that the size of their upper envelope is 
(n�(n)). However

for practical implementation, it is worth noting that �(n) � 4 for n � tower(65536)

where tower(i) is a tower of 2 of length i, i.e. tower(1) = 2 and tower(i + 1) =

2

tower(i)

.

The methodology previously described for computing convex hulls can be applied

for computing upper envelopes. We brie�y recall the main steps. Computing the

bridge at a given oriented line �, i.e. the facet of E

F

intersected by �, can be done
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A facet

Line segments

Vertical line segment

linking two facets of

the upper envelope

Figure 6: Upper envelope of 200 line segments. Facets are shown in bold.
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almost trivially in linear time: �rst, we select the function which has the highest

intersection point with �. Let f be that function. Then, in a second step, we �nd

the two endpoints (to the left and right of � ) limiting the bridge facet. As type

m is �xed, we can compute the two endpoints in linear time. We can also design

a linear-time-per-facet algorithm (an analogous algorithm of Jarvis's march). Then

we consider the case of a set of functions partitionned into k subsets of pairwise

nonintersecting subsets. We obtain a O(n log h+kh)-time upper envelope algorithm.

We de�ne the vertical decomposition of a group of functions as the partially

de�ned functions induced by striping vertically the upper envelope. We follow the

same steps as those of the convex hull algorithm and obtain anO(n�(h;m) log h)-time

O(n�(h;m))-storage algorithm with �(h;m) = O(2

�(h)

c

m

) where c

m

= d

m

2

e if the

functions are partially de�ned and c

m

= d

m

2

e�1 otherwise (see Table 1). Note that

the complexity of the upper envelope depends on both the number of intersection

points and if the functions are partially or totally de�ned.

Thus, for the case of line segments we obtain an O(n�(h) log h)-time algorithm.

We show in the following section how we can reach the optimal bound 
(n logh)

by adapting the technique due to J. Hershberger

47

. The main idea is to group the

the line segments e�ciently. A family of functions is said to be k-intersecting if

the functions are intersecting pairwise in at most k points. A set of k-intersecting

generalized segments is a family of partially de�ned functions that are k-intersecting.

5.1. An Improved Algorithm for k-Intersecting Segments

W.l.o.g. we consider the case of line segments. The generalization of the result

to k-intersecting generalized segments is straightforward. The main idea is to create

groups so that the size of the vertical decomposition of each group remains linear.

We �rst compute a lazy interval tree as follows: consider the 2n endpoints of the

line segments and compute by recursive application of the median algorithm

44

a

partition P = fP

1

; :::;P

p

g of the 2n endpoints so that each sheaf P

i

has size

2n

p

and the sheaves are x-ordered, i.e. x(P

i

) < x(P

j

) for all j > i. We consider the

following p� 1 reference abscissæ and p x-ranges:

� For each sheaf P

i

, we associate the x-range X

i

of the points p

i

2 P

i

. Note

that all the x-ranges of the sheaves are disjoint.

� Between two successive sheaves, we choose an abscissa a

i

so that X

i

< a

i

<

X

i+1

, i.e an abscissa between two consecutive x-ranges of sheaves.

We build an interval tree IT as follows: each leaf of the interval tree corresponds

to the x-range of a sheaf and each internal node to an abscissa separating the

sheaves (see Figure 8). Then, we allocate the n line segments according to the

lowest common ancestor of their two endpoints. At this step, all the segments are

located into two kinds of sets:

� Those staying at a leaf of IT . This means that the x-range of each of these

line segments is included in the x-range of the sheaf. We say that these line

segments are unclassi�ed.
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Figure 7: The upper envelope of 100 line segments. The upper left drawing depicts

the upper envelope of 100 line segments. Then from left to right, and top to bottom,

we �rst compute groups of size 10; 20; :::; 90 and apply the marriage-before-conquest

algorithm on the set of line segments resulting from the vertical decompositions of

their upper envelopes.
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� Those lying in an internal node of IT . This means that all the line segments,

whose lowest common ancestor of the abscissæ of their endpoints is the ab�

scissa a

i

, cross the vertical line x = a

i

. Their upper envelope is linear in the

number of line segments. We say that these segments are classi�ed.

Following the communication of J. Hershberger

47

, we notice that the upper

envelope of the line segments allocated into a same internal level of IT is linear in

the number of line segments. Indeed, the upper envelope of the segments allocated to

a given internal node is linear (see Ref.47) because all these segments cross a vertical

line and the segments of two nodes of a same internal level are separated by a vertical

line by virtue of the interval tree. Let n

i

denote the number of line segments at level

i, 1 � i � dlog pe. By grouping the line segments of each internal level of the interval

tree into groups of size p and computing for each group the vertical decomposition

of their upper envelope, we obtain an O(

n

p

+log p)-coloration, i.e. a partition of the

original set of n line segments into

P

dlog pe

i=0

d

n

i

p

e = O(

n

p

+ log p) subsets of pairwise

non-intersecting line segments resulting from the vertical decomposition of their

upper envelope. We also color the unclassi�ed line segments (those staying at a

leaf of the interval tree) as follows: to the i-th line segment attached to a given leaf

of the interval tree, we give it the color (i; 2). Here, 2 means the unclassi�ed line

segments. Note that i � d

n

p

e. Moreover, two line segments with color (i; 2) do not

intersect since they belong to two di�erent sheaves and are therefore x-separated.

Thus, globally, after an O(n log p)-preprocessing time required for building the

lazy interval tree, we obtain a O(

2n

p

+log p)-coloration of a new created set of O(n)

line segments which has the same upper envelope as O. We run the O(n logh +

kh)-time algorithm upon this new set. Since k =

2n

p

+log p, we obtain an O(n log h+

2n

p

h+ h log p) = O((n + h) logh)-time algorithm with linear storage.

For the case of k-intersecting generalized segments, we note that the complexity

of the upper envelope of the n

i

k-intersecting segments at the i-th level of the interval

tree is O(�(n

i

; k+1))

47

. It follows that the complexity of the upper envelopes (one

upper envelope per group) of the n k-intersecting segments is O(n�(h; k+1)). Thus,

we can compute the upper envelope of k-intersecting segments in time O((n�(h; k+

1) + h) logh). The space requirement has also been reduced to O(n�(h; k + 1)). A

challenging problem is to design an algorithm that computes the upper envelope of n

functions intersecting pairwise in at most m points in less than O(�(n;m+1) logn)

operations. Probably, if a better result is found, it may yield straightforwardly to a

better output-sensitive algorithm since the crucial step of our method is to compute

partitionned sets.

As a �nal remark, to underline the power of the grouping scheme, we show how

in the case of line segments we can obtain again an O(n logh)-time algorithm using

ray shooting procedures. As before, we create d

n

p

e groups of size p, compute their

upper envelopes and preprocess these upper envelopes (which can be viewed as

simple polygons, each of them of size O(p�(p))) for ray shooting. For each group,

the time for computing its upper envelope and preprocess it for ray shooting is

O(p log p)

48;49

. Thus, the total time for the preprocessing step is O(n log p). The
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IT

s

i

P

1

P

p

Figure 8: Building the lazy interval tree.

ray shooting query time of a group is O(log p). Then, the procedure walks from

x = �1 to x = 1 as follows: consider that the algorithm at some stage has

found a portion of the upper envelope (a line segment) and therefore knows (by the

rightmost endpoint e of that facet) which line segment s will support the following

portion of the upper envelope. Then, for each group (in fact each simple polygon),

we shoot a ray from the endpoint e following the direction of s. Finally, among the

n

p

terminations, we choose the one that shorten the most the line segment s. The

cost of this algorithm is O(n log p+(

n

p

log p+

n

p

)h). If p = h then the algorithm has

time complexity O(n logh). We use again the technic of approximation in order to

achieve that bound.

6. Concluding Remarks

We have applied the marriage-before-conquest paradigm to the computation of

the convex hull of n planar convex objects of �xed type m. We �rst described a

linear-time algorithm to compute the bridge of the convex hull at a given oriented

line. Then, we investigated the case where the family of objects consists of k sub�

sets of non-overlapping objects. For that case, we designed an O(n log h+ kh)-time

algorithm where h denotes the output-size. As a byproduct, we obtain an optimal

�(n logh)-time algorithm for computing the convex hull of a set of non-overlapping

objects. Moreover, if each object cannot intersect more than � others then we design

an O(n log h+ �h)-time algorithm. Finally, we transformed the problem of comput�

ing the convex hull of O to computing the convex hull of a set T partitioned into

non-overlapping subsets such that CH(O) = CH(T ). (We use nonoutput-sensitive

algorithms in order to get T .)

The size of the partition of T , i.e. the number of non-overlapping subsets, de�
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pends on the size of the output. Since we do not know the output-size, we iteratively

estimate it. We �nally choose a good estimate to compute the convex hull of a set

of n planar convex objects of �xed type m in O(n�(h;m) log h) time where �(h;m)

is an extremely slowly growing function. We can follow the same scheme for com�

puting the upper envelope of possibly partially de�ned functions. In that case, the

bridge at a given oriented line is the maximal piece of the lower envelope intersected

by that line and can be computed trivially in linear time. Therefore, when com�

puting the convex hull of objects, one might �rst compute the dual functions and

apply the upper envelope algorithm. However, computing directly the convex hull

remains interesting in the case of k-colored partitions because, in that case, one

does not need to apply the grouping scheme.

All these algorithms can be easily parallelized onto EREW PRAM

multi-computers, following the algorithm of S. Akl

50;51

. D.G. Kirkpatrick and R.

Seidel

7

proved that 
(n logh) is a lower bound for computing the convex hull of a

set of n points where h is the number of hull vertices. Can we improve that lower

bound in the case of convex objects of �xed type m? It would also be interesting

to �nd other applications of this method and to generalize it to higher dimensions.
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