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Let M = {pθ(x), θ ∈ Θ} be a parametric statistical model (regular or not). Examples of regular
statistical models are the families of categorical and Gaussian distributions (exponential families),
the families of Gaussian mixture models with a finite number of prescribed components [25] (mix-
ture families), etc. Examples of irregular models are families of Gaussian mixture models with k
components, the family of uniform distributions, etc. Information geometry considers various geo-
metric structures on M. When the statistical model is identifiable, this amounts to the geometry
of domains Θ. I concisely review some geometric structures and geometric computing contributions
below.

Riemannian geometry

The uniqueness and circumcenter of the smallest enclosing ball on a finite point set lying on a
Riemannian manifold was studied in [2].

Finsler geometry

Finsler geometry extends Riemannian geometry by considering smoothly varying Minkowski norms
at tangent planes of a manifold. The forward and backward p-centers on Finsler manifolds was
considered in [1].

Fisher-Rao geometry

The Fisher-Rao geometry of a parametric statistical model corresponds to the Riemannian geom-
etry with respect to the Fisher metric. The Riemannian geodesic distance is called the Fisher-Rao
distance in information geometry [10]. Approximation schemes of the Fisher-Rao distances are con-
sidered in [14, 16]. Fisher-Rao geometry of location-scale families amount to hyperbolic geometry.

Dually flat geometry

Dually flat geometry has the structures of both a Riemannian manifold with a Hessian metric and
a pair of dual torsion-free affine connections. Right-angles in dual geodesic triangles in dually flat
spaces are studied in [13]. The dual Voronoi diagrams in a dually flat space are dual Bregman
Voronoi diagrams [3] in the dual coordinate systems. Exact and approximation of the smallest
enclosing Bregman balls were studied in [31, 21]. Data structures for proximity queries on dually
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flat spaces are given in [27, 26]. Chernoff information is characterized on a dually flat space
in [8, 9]. When the dual potential functions are not in closed-form for exponential or mixture
families, Monte Carlo information-geometric structures are considered in [19]. When the Bregman
generator is separable, the dually flat space amounts to Euclidean geometry [7].

Hyperbolic geometry

Bisectors in Klein ball model of hyperbolic geometry are affine hyperplanes clipped to the open ball
domain [22]. Thus the Klein hyperbolic Voronoi diagram (HVD) and all its k-order Voronoi dia-
grams are equivalent to power diagrams clipped to the ball domain. The geodesics with boundary
conditions in Klein model were solved in [?]. The Klein HVD can be converted to other models of hy-
perbolic geometry [24] (demo: HVD https://www.youtube.com/watch?v=i9IUzNxeH4o, k-order
HVD https://www.youtube.com/watch?v=sM_16XgyfhY). The hyperbolic smallest enclosing ball
(SEB) in Poincaré ball model has an Euclidean shape and thus amounts to an Euclidean small-
est enclosing ball. We can compute numerically the hyperbolic SEB in high dimensions in Klein
model with guarantees [18]. The dual of the HVD is the hyperbolic Delaunay complex [11]. Klein
Riemannian geodesics, general position and degeneracies of point sets in hyperbolic geometry are
studied in [23]. Klein HVDs can be extended to Cayley-Klein HVDs [20] where the domains are
ellipsoids. User interfaces based on hyperbolic geometry and information geometry were reported
in [?]. Robust embeddings of supervised models in hyperbolic geometry are given in [?].

Hilbert geometry and Birkhoff projective geometry

Hilbert geometry is defined on open bounded convex domain. When the domain is a ball, it amounts
to Klein model of hyperbolic geometry. Hilbert geometry of the (a) simplex domain modeling the
space of categorical distributions and (b) the elliptope of correlation matrices are studied in [29, 30].
Balls in Hilbert geometry with polygonal domains are investigated in [28].

For an open bounded convex domain Ω, we may define the cone CΩ = {(λ, λΩ), λ > 0} by
stacking all its homothets. Birkhoff geometry is a projective geometry which coincides on slices of
the cone with the underlying Hilbert geometry [15].

Siegel geometry

The Siegel upper space is a generalization of the Poincaré upper plane: The set of complex square
matrices with symmetric positive-definie imaginary parts [17]. The Siegel upper space can be
transformed into the Siegel matrix ball which is a generalization of Poincaré ball mode of hyperbolic
geometry. The sectional curvatures of the Siegel upper space was shown to be non-positive [4]. The
Siegel-Klein geometry [12] is the Hilbert geometry of the Siegel matrix ball model.

Regular cone and symmetric cone geometry

The cone of symmetric positive-definite matrices is a symmetric cone [15]. Equivariant log-extrinsic
centers and Gaussian-like distributions are studied in [5].
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Bruhat-Tits spaces

Bruhat-Tits spaces have a semi parallelogram law.

Non-positive-curvature (NPC) spaces

CAT spaces

Lightlike manifolds

The parameter space of a deep neural network can be considered as a lightlike manifold [32].

Stratifolds

The parameter space of a deep neural network can be considered as a stratifold [6].
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[19] Frank Nielsen and Gaëtan Hadjeres. Monte Carlo information-geometric structures. Geometric
Structures of Information, pages 69–103, 2019.

[20] Frank Nielsen, Boris Muzellec, and Richard Nock. Classification with mixtures of curved
Mahalanobis metrics. In IEEE International Conference on Image Processing (ICIP), pages
241–245. IEEE, 2016.

[21] Frank Nielsen and Richard Nock. On the smallest enclosing information disk. Information
Processing Letters, 105(3):93–97, 2008.

[22] Frank Nielsen and Richard Nock. Hyperbolic Voronoi diagrams made easy. In International
Conference on Computational Science and Its Applications, pages 74–80. IEEE, 2010.

[23] Frank Nielsen and Richard Nock. The hyperbolic Voronoi diagram in arbitrary dimension.
arXiv preprint arXiv:1210.8234, 2012.

[24] Frank Nielsen and Richard Nock. Further results on the hyperbolic Voronoi diagrams. arXiv
preprint arXiv:1410.1036, 2014.

[25] Frank Nielsen and Richard Nock. Visualizing hyperbolic Voronoi diagrams. In Proceedings of
the thirtieth annual symposium on Computational geometry, pages 90–91, 2014.

[26] Frank Nielsen and Richard Nock. On the geometry of mixtures of prescribed distributions. In
2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
pages 2861–2865. IEEE, 2018.

4



[27] Frank Nielsen, Paolo Piro, and Michel Barlaud. Bregman vantage point trees for efficient
nearest neighbor queries. In 2009 IEEE International Conference on Multimedia and Expo,
pages 878–881. IEEE, 2009.

[28] Frank Nielsen, Paolo Piro, and Michel Barlaud. Tailored Bregman ball trees for effective
nearest neighbors. In Proceedings of the 25th European Workshop on Computational Geometry
(EuroCG), pages 29–32, 2009.

[29] Frank Nielsen and Laetitia Shao. On balls in a Hilbert polygonal geometry (multimedia
contribution). In 33rd International Symposium on Computational Geometry (SoCG 2017).
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.

[30] Frank Nielsen and Ke Sun. Clustering in Hilbert’s projective geometry: The case studies
of the probability simplex and the elliptope of correlation matrices. Geometric structures of
information, pages 297–331, 2019.

[31] Frank Nielsen and Ke Sun. Non-linear embeddings in Hilbert simplex geometry. In Topological,
Algebraic and Geometric Learning Workshops 2023, pages 254–266. PMLR, 2023.

[32] Richard Nock, Ehsan Amid, Frank Nielsen, Alexander Soen, and Manfred K. Warmuth. Hyper-
bolic embeddings of supervised models. In Neural Information Processing Society (NeurIPS),
Vancouver, Canada, December 2024.

[33] Richard Nock and Frank Nielsen. Fitting the smallest enclosing Bregman ball. In European
Conference on Machine Learning, pages 649–656. Springer, 2005.

[34] Richard Nock and Frank Nielsen. Information-geometric lenses for multiple foci+contexts
interfaces. In SIGGRAPH Asia 2013 Technical Briefs, pages 1–4. 2013.

[35] Ke Sun and Frank Nielsen. A Geometric Modeling of Occam’s Razor in Deep Learning. arXiv
preprint arXiv:1905.11027, 2019.

5


