
Tailored Bregman Ball Trees
for Effective Nearest Neighbors

Frank Nielsen1 Paolo Piro2 Michel Barlaud2

1Ecole Polytechnique, LIX, Palaiseau, France
2CNRS / University of Nice-Sophia Antipolis, Sophia Antipolis, France

25th European Workshop on Computational Geometry
March 16, 2009

ULB, Brussels, Belgium

Outline

Introduction
Bregman Nearest Neighbor search
Bregman Ball Trees (BB-trees)

Improved Bregman Ball Trees
Speeded-up construction
Adaptive node degree
Symmetrized Bregman divergences

Experiments

Nearest Neighbor (NN) search

Applications: computer vision, machine learning, data mining, etc.

Nearest neighbor NN(q)

Given:

I a set S = {p1, ..., pn} of n d-dimensional points

I a query point q

I a dissimilarity measure D

then
NN(q) = arg min

i
D(q, pi) (1)

For asymmetric D (like Bregman divergences):

NNl
F (q) = arg mini D(q, pi) (left-sided)

NNr
F (q) = arg mini D(pi , q) (right-sided)

NNF (q) = arg mini (D(pi ||q) + D(q||pi))/2 (symmetrized)

Bregman divergences DF

F (x) : X ⊂ Rd 7→ R strictly convex and differentiable generator

DF (p||q) = F (p)− F (q)− (p − q)T∇F (q) (2)

Bregman sided NN queries are related by Legendre conjugates:
DF∗(∇F (q)||∇F (p)) = DF (p||q) (dual divergence)

Widely used as distorsion measures between image features:

I Mahalanobis squared distances (symmetric)
F (x) = Σ−1x (Σ � 0 is the covariance matrix)

I Kullback-Leibler (KL) divergence (asymmetric)

F (x) =
d∑

j=1

xj log xj

Näıve search methods

Brute-force linear search:

I exhaustive brute-force O(dn)

I randomized sampling O(αdn), α ∈ (0, 1)

Randomized sampling

I keep a point with probability α
I mean size of the sample: αn
I speed-up: 1

α
I mean rank of the approximated NN: 1

α

Data structures for improved NN search

Two main sets of methods:

I mapping techniques (e.g. locality-sensitive hashing, random
projections)

I tree-like space partitions with branch-and-bound queries (e.g.
kD-trees, metric ball and vantage point trees)

I faster than brute-force (pruning sub-trees)
I approximate NN search

Extensions from the Euclidean distance to:

I arbitrary metrics: vp-trees [Yianilos, SODA 1993]

I Bregman divergences: k-means [Banerjee et al., JMLR 2005]

We focus on Bregman Ball trees [Cayton, ICML 2008]

Outline of BB-trees (I)

BB-tree construction
Recursive partitioning scheme

1. 2-means clustering (keep the
two centroids cl , cr)

2. Bregman Balls B(cl ,Rl) and
B(cr ,Rr) (possibly
overlapping)

3. continue recursively until
matching a stop criterion

Termination criteria:

I maximum number of points l0
stored at a leaf

I maximum leaf radius r0

B1

B2 B3

B4 B5 B6 B7

B2

B3

B4
B5

B6

B7

Outline of BB-trees (II)

Branch-and-bound search

1. Descend the tree from the root to the leaves

I At internal nodes, choose child whose ball is “closer” to q (the
sibling is temporarily ignored)

I At leaves, search for the NN candidate p′ (brute force)

2. Traverse back up the tree (check ignored nodes)

I project q onto the ball B(c ,R) (bisection search):

qB = arg min
x∈B

DF (x ||q)

I if DF (qB ||q) > DF (p′||q) the node can be pruned out

Outline of BB-trees (III)

Bregman annuli

Lower/upper bounds to speed-up geodesic bisection search:

B(c ,R,R ′) = {x |R ≤ DF (x ||c) ≤ R ′}

c

B(c,R,R’)

R R’

q

p’

x
y

DF (p
′||q) < DF (y||q) (prune out)

c

B(c,R,R’)

R R’

q

p’

x
y

DF (p
′||q) > DF (x||q) (explore)

Our main contributions

From BB-tree to BB-tree++:

I Speed up construction time (Bregman 2-means++)

I Learn the tree branching factor (G -means)

I Explore nearest nodes first (priority queue)

I Handle symmetrized/mixed Bregman divergences

We mainly focus on approximate NN queries (stop the search once
a few leaves have been explored)

Speed up construction time

We replace Bregman 2-means by a careful light initialization of the
two cluster centers [Arthur et al., SODA 2007]

Bregman 2-means++

1. pick the first seed cl uniformly at random

2. for each pi ∈ S compute DF (pi ||cl)
3. pick the second seed cr according to the distribution:

πi =
DF (pi ||cl)∑

pj∈S DF (pj ||cl)
(3)

I Good approximation guaranties [Nock et al., ECML 2008].

I Fast tree construction, nice splitting

Learning the tree branching factor (I)

Goal Get as many as possible non-overlapping Bregman balls

Example Three separated Gaussian samples.

dataset 2−means 3−means

c1

c2

c1

c2

c3

Method
adapt the branching factor bfi of each internal node

Learning the tree branching factor (II)

G -means

I assume Gaussian distribution of each group of points

I use Bregman 2-means++ inizialization to split a set

I apply the Anderson-Darling normality test to the two clusters

I if the test returns true, we keep the center, otherwise we split
it into two

I repeat for each new cluster

Ongoing work: generalization to goodness-of-fit tests for
exponential family distributions (e.g. Stephens test).

Handling symmetrized Bregman divergences

Why?

I required by content-based information retrieval (CBIR) systems

I technically are not Bregman divergences

Example: SKL & JS(p; q) = 1
2KL(p|| p+q

2) + 1
2KL(q|| p+q

2)

Proposed solutions:

I symmetrized Bregman centroid of B(c ,R): geodesic-walk algorithm
of [Nielsen et al., SODA 2007].

I mixed BB-trees: store two centers for each ball B(l , r ,R)
mixed Bregman divergence [Nock et al., ECML 2008]

DF ,α(l ||x ||r) = (1− α)DF (l ||x) + αDF (x ||r), α ∈ [0, 1] (4)

(for α = 1
2 , l = r we find the symmetrized Bregman div.)

Nearest neighbors for Image Retrieval

Task find similar images to a query

I S dataset of feature vectors (descriptors)

I q descriptor of a query image

I retrieve the most similar descriptor (image) NN(q)

Example SIFT descriptors: [Lowe, IJCV 2005].

Dataset
10,000 images from PASCAL Visual Object Classes Challenge 2007

I 10,000 database points (for building the tree)

I 2,360 query points (for on-line search)

I dimension d = 1111

Performance evaluation

Approximate search

Find a “good” NN, i.e. a point close enough to the true NN

I explore a given amount of leaves

I from near-exact search to visiting one single leaf

speed-up number of divergence computations (ratio of
brute-force over BB-tree++)

Ravg average approximated NN rank

NC number of points closer to the approximated NN
(NC = Ravg − 1)

BB-tree construction performances

iter number of k-means iterations

bs maximum number of points in a leaf

depth maximum tree depth

depthavg average tree depth

nLeaves number of leaf nodes

Bb-tree construction (bs = 50)
method iter depth depthavg nLeaves speed-up
2-means 10 53 28.57 594 1

2-means++ 10 58.33 31.18 647 1.03
2-means++ 0 20 10.76 362 19.71

Asymmetric NN queries

BB-tree vs BB-tree++

−1 0 1 2

0

1

2

Number Closer

S
pe

ed
−

up

SIFT dataset (KL)

bb−tree++ (BF=4, bs=100)

bb−tree Cayton

*

*

Symmetrized NN queries

BB-tree++ vs Randomized Sampling

10
0

10
1

10
2

10
0

10
1

10
2

10
3

Average approximate NN rank

S
pe

ed
−

up
 w

rt
. b

ru
te

−
fo

rc
e

SIFT dataset (SKL)

BB−tree++ (BF=4, bs=100)
Random Sampling

*

*

Conclusion

BB-tree++:

I adapted to the inner geometric characteristics of data

I speed up construction (k-means careful initialization)

I speed up search (priority queue)

I handle symmetrized Bregman divergences

I promising results for image retrieval (SIFT histograms)

Ongoing work:

I design the most appropriate divergence to a class of data

I extensive application to feature sets arising from image
retrieval/classification

	Introduction
	Bregman Nearest Neighbor search
	Bregman Ball Trees (BB-trees)

	Improved Bregman Ball Trees
	Speeded-up construction
	Adaptive node degree
	Symmetrized Bregman divergences

	Experiments

