
BREGMAN VANTAGE POINT TREES FOR EFFICIENT NEAREST NEIGHBOR QUERIES

Frank Nielsen

École Polytechnique / Sony CSL
Palaiseau, France / Tokyo, Japan

Paolo Piro and Michel Barlaud

University of Nice-Sophia Antipolis / CNRS
Sophia Antipolis, France

ABSTRACT
Nearest Neighbor (NN) retrieval is a crucial tool of many

computer vision tasks. Since the brute-force naive search is
too time consuming for most applications, several tailored
data structures have been proposed to improve the efficiency
of NN search. Among these, vantage point tree (vp-tree) was
introduced for information retrieval in metric spaces. Vp-
trees have recently shown very good performances for image
patch retrieval with respect to the L2 metric. In this paper we
generalize the seminal vp-tree construction and search algo-
rithms to the broader class of Bregman divergences. These
distorsion measures are preferred in many cases, as they also
handle entropic distances (e.g., Kullback-Leibler divergence)
besides quadratic distances. We also extend vp-tree to deal
with symmetrized Bregman divergences, which are common-
place in applications of content-based multimedia retrieval.
We evaluated performances of our Bvp-tree for exact and ap-
proximate NN search on two image feature datasets. Our re-
sults show good performances of Bvp-tree, specially for sym-
metrized Bregman NN queries.

Index Terms— Nearest neighbor queries, vantage-point
trees, Bregman divergences.

1. INTRODUCTION
Nearest neighbor (NN) search is a common task in several
multimedia and computer vision applications such as au-
dio/image/video retrieval and object/scene recognition. Given
a set S = {p1, ..., pn} of n d-dimensional points and a query
point q, the nearest neighbor NN(q) is defined as the point of
S that is closest to q with respect to a dissimilarity measure
D: NN(q) = argmini D(q, pi). If no prior preprocessing
of data is provided, finding the NN has linear computational
cost O(dn), which is prohibitive in applications involving
huge amounts of data. Hence, much effort has been devoted
to design tailored data structures that speed-up NN search
by exploiting space properties (e.g., the triangle inequality
for metrics). A major category of such techniques includes
tree-like space partitions, such as kD-trees, metric ball and
vantage point trees. These methods improve over linear brute
force search by pruning sub-trees whose exploration can be
discarded. They are also expected to handle approximate
NN queries more efficiently than the randomized sampling

method, which performs brute force search on a random sam-
ple of the dataset. Namely, vantage point tree (vp-tree) has
been historically introduced by Yianilos [1] in 1993 as a data
structure for partitioning a general metric space in a hierarchi-
cal way. A tree structure is built by recursively splitting each
node covering a set into two siblings covering corresponding
subsets. Node partitioning is based on a randomly chosen
vantage point. For each point of the node, its distance to the
vantage point is compared to a distance threshold. Points with
distances smaller than the threshold are classified as “near”
and assigned to, say, the left subtree, the remaining others
are classified as “far” and assigned to the right subtree. The
threshold is usually computed as the median of all distances
to the vantage point, thus balancing both sub-trees (Figure 1).

Vp-trees have been rarely but successfully used in appli-
cations like image indexing [2] and music information re-
trieval [3]. In addition, they have recently shown very good
performances for image patch retrieval wrt. the L2 metric [4].
Such promising results motivated us to further investigate the
use of vp-tree and taylor it to other distorsion measures, which
may be more appropriate than the Euclidian metric for mul-
timedia features. A broad class of such measures is repre-
sented by Bregman divergences, which are not metrics in gen-
eral and do not satisfy the triangle inequality. A Bregman di-
vergence DF on vector set X ⊂ R

d is defined for a strictly
convex and differentiable generator F (x) : X ⊂ R

d �→ R as
DF (p||q) = F (p)− F (q)− (p− q)T∇F (q), where∇F de-
notes the gradient of F . This class of divergences (param-
eterized by a generator F) includes all quadratic distances
(e.g., the Mahalanobis squared distances) and the asymmetric
Kullback-Leibler (KL) divergence (F (x) =

∑d

j=1 xj log xj ,
the negative Shannon entropy). Bregman divergences are es-
sential distortion measures as they are provably the canonical
distances that generalize the Euclidean flat geometry [5, 6].

In this paper, we propose the Bregman vantage point tree
(Bvp-tree) as a generalization of the metric vp-tree to Breg-
man divergences. Our main theoretical contribution is to re-
place the triangle inequality by an analogous criterion based
on the intersection of Bregman balls, which allows one for
checking pruning conditions wrt. Bregman divergences. Fi-
nally, we show experimental results on two large image fea-
ture datasets for both exact and approximate NN queries.

878978-1-4244-4291-1/09/$25.00 ©2009 IEEE ICME 2009

Authorized licensed use limited to: Ecole Polytechnique. Downloaded on October 6, 2009 at 09:52 from IEEE Xplore. Restrictions apply.

2. BREGMAN VANTAGE-POINT TREES

We first describe the Bvp-tree data structure based on the
seminal description of Yianilos’ vp-tree [1] (Section 2.1).
Then we describe our algorithm for checking the pruning
conditions when visiting the tree (Section 2.2). Since Breg-
man divergences are, in general, asymmetric distorsion mea-
sures, we consider both sided and symmetrized NN queries.
Without loss of generality, we consider only right-sided NN
queries, defined as: NNr

F (q) = arg mini DF (pi||q), since
left-sided NN queries can be handled similarly by using the
duality property: DF (p||q) = DF∗(∇F (q)||∇F (p)) (F ∗

is the Legendre conjugate of F . See [6] for details.) On
the other hand, symmetrized NN queries are defined as:
NNF (q) = argmini(DF (pi||q) + DF (q||pi))/2.

2.1. Outline of Bregman vantage point tree (Bvp-tree)

A Bvp-tree is built by applying recursively the same parti-
tioning procedure as described in [1], except for replacing
distances by Bregman divergences. First, the tree root is cre-
ated, which represents the whole dataset S. Then a vantage
point v is randomly drawn from the dataset and the distance
DF (x||v) is computed for each point x ∈ S. A distance
threshold τ defines a partition S = Sl ∪ Sr, where Sl is cov-
ered by the Bregman ball B(v, τ) = {x | DF (x||v) < τ}
and Sr is contained in the complement subset S \ B(v, τ) =
{x | DF (x||v) ≥ τ}. In our implementation, we define τ as
the median of the distances {DF (x||v) | x}. This hierarchi-
cal decomposition of S is applied recursively on Sl and Sr

until a stopping criterion is eventually met. This criterion is
typically based either on setting: (1) the maximum number
of leaf points bs (bucket size), or (2) the maximum leaf ra-
dius r0. When such a criterion is met, two leaves are created
to store the corresponding source points. (All internal nodes
store only Bregman balls B(v, τ).) Figure 1 shows an exam-
ple of the space partition induced by a Bvp-tree.

In order to retrieve the NN for a given query q, we per-
form a branch-and-bound traversal of the tree. The tree is
visited by traversing it from the root to the leaves follow-
ing a given branching order (depth first search). Namely, at
any internal node, we choose to branch first on the sub-tree
whose corresponding ball is closer to the query q. Temporar-
ily ignored siblings are added to a priority queue for succes-
sive exploration. (The smaller the distance of a sibling node
to the query point, the largest its priority.) The first visited
leaf yields the very first NN candidate point p′, thus giv-
ing an upper bound DF (p′||q) to the NN distance. Indeed,
the true NN cannot lie out the boundary of the Bregman ball
B(q, DF (p′||q)) (query ball). Then, in exact search, all for-
merly ignored subtrees are explored according to their prior-
ity order. Each subtree needs to be visited or not depending
on whether DF (p′||q) > minx∈B(c,R) DF (x||q), where p′ is
the current NN candidate. This test is performed by check-

B1

B3

B2

B4

B5

B6

B7

B1

B2 B3

B4 B5 B6 B7

p1 p2 p3 p4 p5 p6 p7 p8

p1

p2
p3

p4

p5

p6

p7

p8

Fig. 1. Schematic description of a Bvp-tree construction on a
set of 8 points (wrt. SKL aka. Jensen-Shannon divergence).

ing whether the ball B(c, R) intersects the current query ball
B(p′, DF (p′||q)) or not. If the two balls do not intersect, then
the node can be pruned. Otherwise, it must be explored. Ev-
ery time a new NN candidate is found, the upper bound is up-
dated, thus reducing the size of the search subspace. Pruning
subspaces is a major advantage of such data structures, as the
more leaves are pruned out, the more significant is the com-
putational speed-up over brute-force search. In the following
section we describe how this test is efficiently implemented.

2.2. Pruning condition

We present a novel algorithm for checking whether the inter-
section between two Bregman balls is void or not. This test
enables us to prune nodes that cannot contain a closer neigh-
bor than the actual NN candidate. Indeed, given a query point
q and a NN candidate p′, the Bregman ball B(q, r′) of radius
r′ = DF (p′||q) centered at q defines the only space region
where a closer NN may be found. As a result, any subtree
rooted at a node that does not intersect B(q, r′) can be pruned
without impacting the retrieval precision.

Consider two non-concentric Bregman balls B1(p, rp)
and B2(q, rq). The radical hyperplane H12 is the locus
of points that have equal power with respect to these two
balls. It is defined as: H12 : B1(x) − B2(x) = 0, where
B1(x) : DF (x||p)− rp = 0 and B2(x) : DF (x||q) − rq = 0
are the power equations of the two balls. Plugging the defini-
tion of DF (x||·) yields the following equation of the radical
hyperplane: H12 : F (q) − F (p) + r2 − r1 + 〈x,∇F (q) −
∇F (p)〉 + 〈p,∇F (p)〉 − 〈q,∇F (q)〉 = 0, where 〈x, y〉 de-
note the vector inner product xT y. If the balls intersect,
then the radical hyperplane necessarily contains points of
intersection (Figure 2). In order to test this condition, we
propose to check the point of intersection between the radi-
cal hyperplane and the geodesic Γpq linking p to q, which
is defined as Γpq = {LERP(λ, p, q) | λ ∈ R}, with
LERP(λ, p, q) = ∇F−1((1 − λ)∇F (p) + λ∇F (q)). If nei-
ther ball contains this point, then their intersection is empty.
We implement this test as a bisection geodesic walk algo-
rithm similar to that used in [7] for computing symmetrized

879

Authorized licensed use limited to: Ecole Polytechnique. Downloaded on October 6, 2009 at 09:52 from IEEE Xplore. Restrictions apply.

(a) (b) (c)

Fig. 2. Examples radical hyperplanes for two (a,b) intersect-
ing, and (c) non-intersecting Bregman balls.

Bregman centroids. Note that we first check whether a ball
contains the center of the other, as this would make more
iterations useless. Then, we use bounds to stop the bisection
algorithm as soon as possible, without need for precisely
computing the common intersection point (Algorithm 1).

Algorithm 1 Ball Intersection(Bq(q, Rq), Bv(v, Rv), λl, λr)

Input: Bregman Balls Bq(q, Rq) (query point ball), Bv(v, Rv)
(vantage point ball), λl, λr ∈ (0, 1);
SET xλl

= ∇F−1((1− λl)∇F (q) + λl∇F (v));
SET xλr

= ∇F−1((1− λr)∇F (q) + λr∇F (v));
if DF (xλr

||q) < Rq OR DF (xλl
||v) < Rv then

return YES;
end if
SET λ = λl+λr

2
;

SET xλ = ∇F−1((1− λ)∇F (q) + λ∇F (v));
if DF (xλ||q) > Rq AND DF (xλ||v) > Rv then
return NO;

else ifDF (xλ||q) < Rq AND DF (xλ||v) < Rv then
return YES;

else ifDF (xλ||q) < Rq AND DF (xλ||v) > Rv then
SET λl = λ;
return Ball Intersection(Bq(q, Rq), Bv(v, Rv), λl, λr);

else ifDF (xλ||q) > Rq AND DF (xλ||v) < Rv then
SET λr = λ;
return Ball Intersection(Bq(q, Rq), Bv(v, Rv), λl, λr);

end if

3. EXPERIMENTS

We carried out experiments for both KL and SKL (Sym-
metrized KL aka. Jensen-Shannon divergence) queries per-
formed on Bvp-trees. We evaluated construction and search
performances for two datasets of image features, which have
been already used by Cayton [8] to evaluate his Bb-tree data
structure. Each dataset contains two parts: (1) A reference
point database, which we used for building the tree structure
at pre-processing time, and (2) a query point set, which we
used for performing on-line NN queries on Bvp-trees. The
first dataset (SIFT) contains high-dimensional histograms of
SIFT descriptors (d = 1111), which are among the most
widely used descriptors in several applications of computer
vision. The SIFT dataset contains 10,000 reference points

and 2,300 query points. The second dataset (Corel) is a col-
lection of color histograms of Corel images, which have been
extensively used to benchmark several methods of image re-
trieval and categorization. It contains 60,000 reference points
and 6,616 query points.

In this section, we present results of our Bvp-tree imple-
mentation for both asymmetric (KL) and symmetrized (SKL)
Bregman queries. First, we analyze the main properties of the
tree structure when varying the partitioning termination crite-
rion, as well as the construction cost (Section 3.1). Then we
discuss the most significant results of both exact and approx-
imate NN retrieval (Section 3.2).

3.1. Bvp-tree construction

Low construction cost is a major advantage of Bvp-tree over
other data structures like Bb-trees, which usually require run-
ning Bregman k−means clustering [9]. Indeed, when using
random vantage points, only one divergence has to be com-
puted for each point in a Bregman ball. Hence, the overall
construction time is O(nδ), n being the dataset size and δ
the average depth of the tree. (Note that the computational
cost of Bb-tree construction is O(rnδ), with r ≥ 2 increas-
ing with the number of k−means iterations.) As mentioned
in Section 2.1, we used either the bucket size (bs) or the leaf
radius (r0) criterion for stopping the node branching. The
first criterion enables us to build a perfectly balanced van-
tage point tree, i.e., all leaves have equal depth and store the
same number of data points. On the contrary, the second cri-
terion enables to partition even large Bregman balls that con-
tain very sparse data, thus giving smaller number of leaves.
Table 1 summarizes the typical characteristics of Bvp-trees
for the Corel dataset, as well as the construction cost, for dif-
ferent values of the construction parameters. The construction
cost is expressed as the total number of divergences computed
when building the tree. The top half-table shows characteris-
tics of trees built with the bucket size criterion. In this case,
trees are perfectly balanced, as the average tree depth equals
the maximum one. The bottom half-table refers to trees built
with the leaf radius criterion, which give unbalanced trees,
as proven by the difference between maximum and average
tree depth. Also note that trees having roughly equal aver-
age depth, but constructed with different criteria, have signif-
icantly different overall sizes (i.e., number of leaves).

3.2. Bvp-tree search

We tested our Bvp-tree algorithm for both exact and approxi-
mate NN retrieval. In addition, we evaluated performances of
both sided and symmetrized Bregman NN queries on the two
datasets. Table 2 displays results of exact search for different
settings of the tree construction. Performances are expressed
in terms of the computational cost ratio between brute-force
and Bvp-tree search. These results show a significant order
of magnitude speed-up over the brute-force method for the

880

Authorized licensed use limited to: Ecole Polytechnique. Downloaded on October 6, 2009 at 09:52 from IEEE Xplore. Restrictions apply.

dataset bs depth depthavg nLeaves cost
Corel 50 11 11 2048 6.6 · 105

Corel 100 10 10 1024 6.0 · 105

Corel 200 9 9 512 5.4 · 105

dataset r0 depth depthavg nLeaves cost
Corel 1.0 · 100 13 10.50 3790 6.3 · 105

Corel 1.5 · 100 13 10.09 3586 6.1 · 105

Corel 2.0 · 100 13 6.71 718 4.0 · 105

Table 1. Bvp-tree construction results for different stopping
criteria: bucket size (bs) or leaf radius (r0).

div dataset bs=50 bs=100 bs=200 Bb-tree
KL Corel 2.12 2.33 2.04 2.4
KL SIFT 0.90 0.95 0.97 0.9

SKL Corel 3.24 3.13 2.79 -
SKL SIFT 0.96 1.01 1.05 -

Table 2. Performances of exact Bvp-tree search, measured
as computational speed-up over brute-force search. The last
column displays results reported by Cayton [8] for Bb-trees.

Corel dataset. On the contrary, the SIFT dataset revealed to
be more challenging because of the very high dimensionality
of data. Interestingly, SKL queries show better performances
than asymmetric KL queries. A comparison with results re-
ported by Cayton [8] for the KL divergence shows that Bvp-
tree does not improve over Bb-tree (last column in Table 2).
However, experiments of SKL queries gave better results, al-
though a direct comparison with Bb-tree is not possible, as
this latter does not handle symmetrized queries.

Besides investigating exact search, we also tested our
Bvp-tree for approximate NN retrieval. This is more inter-
esting for practical applications, where the search task is
generally relaxed to retrieve a “good” NN, i.e., a point that
is close enough to the true NN. This approximation allows
for significant speed-ups when searching the tree. In order to
find an approximate NN, we performed the iterative Bvp-tree
search procedure up to a maximum prescribed number of
visited leaves. In each experiment, we fixed a value of this
parameter, ranging from near-exact search to the exploration
of a single node, then we evaluated the Number Closer (i.e.,
the number of closer points to the approximated NN) and the
Speed-up (i.e., the ratio between the number of divergence
computations of brute-force and tree search). Figure 3 dis-
plays the most significant results of such experiments (log-log
plot).

Acknowledgments
We gratefully acknowledge financial support from DIGITEO
GAS 2008-16D, ANR GAIA 07-BLAN-0328-01 and ANR
ICOS-HD.

−4 −3 −2 −1 0 1 2 3 4
0

1

2

3
Corel dataset (SKL)

Number Closer

Sp
ee

d−
up

max leaf size = 50
max leaf radius = 1.5

−1 0 1 2
0

1

2
SIFT dataset (SKL)

Number Closer

Sp
ee

d−
up

Fig. 3. Results of approximate NN retrieval (log-log plot).

4. REFERENCES

[1] P.-N. Yianilos, “Data structures and algorithms for near-
est neighbor search in general metric spaces,” in SODA,
1993, pp. 311–321.

[2] H. Shao, T. Svoboda, V. Ferrari, T. Tuytelaars, and L.-
J. Van Gool, “Fast indexing for image retrieval based
on local appearance with re-ranking,” in ICIP, 2003, pp.
737–740.

[3] M. Skalak, J. Han, and B. Pardo, “Speeding melody
search with vantage point trees,” in ISMIR, 2008.

[4] N. Kumar, L. Zhang, and S.-K. Nayar, “What is a good
nearest neighbors algorithm for finding similar patches in
images?,” in ECCV (2), 2008, pp. 364–378.

[5] S.-I. Amari and N. Nagaoka, Methods of Information Ge-
ometry, Oxford University Press, 2000.

[6] F. Nielsen, J.-D. Boissonnat, and R. Nock, “On Bregman
voronoi diagrams,” in SODA. 2007, pp. 746–755, SIAM.

[7] F. Nielsen and R. Nock, “Bregman sided and sym-
metrized centroids,” in ICPR. 2008, IEEE CS Press.

[8] L. Cayton, “Fast nearest neighbor retrieval for Bregman
divergences,” in ICML, 2008, pp. 112–119.

[9] A. Banerjee, S. Merugu, I.-S. Dhillon, and J. Ghosh,
“Clustering with Bregman divergences,” Journal of Ma-
chine Learning Research, vol. 6, pp. 1705–1749, 2005.

881

Authorized licensed use limited to: Ecole Polytechnique. Downloaded on October 6, 2009 at 09:52 from IEEE Xplore. Restrictions apply.

