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Outline

• Bregman divergences

• Dual information geometry & Bregman manifolds

• Generalized convexity and designing divergences from convexity gaps



Part I. 

Bregman divergences:
- Legendre-Fenchel transformation (dual parameterization)
- Fenchel-Young divergences (mixed parameterization)
- Statistical divergences, statistical models & Bregman divergences



Bregman divergences
• F(θ): strictly convex and differentiable convex function on an open convex 

domain ϴ
• Design the Bregman divergence as the vertical gap between F(θ1) and the 

linear approximation of F(θ) at θ2  evaluated at θ1 :

[Bregman 1967]



• Positive-definite:
• BF(θ1 : θ2) > 0 when θ1 ≠ θ2

• BF(θ1 : θ2) = 0 if and only if θ1 = θ2

• Symmetric only for generalized squared Euclidean/Mahalanobis distance, 
asymmetric otherwise

• Does not satisfy the triangle inequality of metric distances
• Smooth/differentiable w.r.t. parameters ⇒ divergences (contrast functions)

Bregman divergences: Some properties

[N+ 2007]

[N+ 2007] Bregman Voronoi diagrams: Properties, algorithms and applications, arXiv:0709.2196 



• Bregman divergence (BD) can be interpreted as the mean-value remainder of 
a first-order Taylor expansion of F(θ) at θ2 :

• Since F is strictly convex, the Hessian is positive-definite:

• and this proves that BDs are positive-definite:

Bregman divergences: 1st order  Taylor remainder



Scalar and separable Bregman divergences
• D-variate Bregman divergence w.r.t. parameter

• Separable: Bregman generator is sum of univariate/scalar  Bregman generators:

• For example, generalized square Euclidean distance with diagonal matrix Q



Extended Kullback-Leibler divergence
• Extended Kullback-Leibler divergence (eKL) is a D-dimensional separable 

Bregman divergence induced by the  Shannon negentropy Bregman 
generator:

• p+ means a positive measure (not necessarily normalized to  a probability)
• When p+ is normalized: 

• eKL divergence also called extended relative entropy in information 
theory

Lafferty, Lebanon, Boosting and maximum likelihood for exponential models, NeurIPS 14 (2002)



Discrete Kullback-Leibler divergence: 
A  non-separable Bregman divergence

• The KLD between two categorical distributions a.k.a. multinoulli amounts 
to a non-separable Bregman divergence on the natural parameters of 
the multinoulli distributions interpreted as an exponential family.

[NH 2019] Monte Carlo information-geometric structures, Geometric Structures of Information, 2019.
Guaranteed bounds on information-theoretic measures of univariate mixtures using piecewise log-sum-exp inequalities, Entropy, 18(12), 2016

LogSumExp is only convex but LogSumExp+ is strictly convex [NH 2019]



Legendre-Fenchel transformation
• Consider a Bregman generator of Legendre-type (proper, lower semi-

continuous). Then its convex conjugate obtained from the Legendre-
Fenchel transformation is a Bregman generator of Legendre type.

• Legendre-Fenchel transformation applies to any multivariate function
• Analogy of the Halfspace/Vertex representation of the epigraph of F

• Fenchel-Moreau’s biconjugation theorem for F of Legendre-type:
[Touchette 2005] Legendre-Fenchel transforms in a nutshell
[N 2010] Legendre transformation and information geometry

Concave programming:



• Legendre-Fenchel transformation also called the slope transform

Reading the Legendre-Fenchel transformation

(Here, F was chosen as the cumulant function of the Poisson distributions)

Points/Lines



• Dual parameterizations of epigraph:                         and
• Convex conjugate expressed as : 
• To get in closed form the convex conjugate F*, we need ∇F*(η), i.e.,  

invert ∇F(θ) 

• Fenchel-Young inequality:
with equality if and only if 

• Fenchel-Young divergence use mixed parameterization θ/η: 

Legendre-Fenchel transform: 
Mixed coordinates and Fenchel-Young divergence



Dual Bregman and dual Fenchel divergences

• Identity of dual Bregman divergences:

• In general, dual or reverse divergence:

• Primal, dual or mixed parameterizations of Bregman divergences:



• Generalize the law of cosines for the squared Euclidean distance

• Yields a generalization of the Pythagorean theorem 
when

3-parameter identity of Bregman divergences

On geodesic triangles with right angles in a dually flat space, Progress in Information Geometry: Theory and Applications, 2021



• Parallelogram identity

• In Euclidean geometry:

4-parameter identity of Bregman divergences

On geodesic triangles with right angles in a dually flat space, Progress in Information Geometry: Theory and Applications, 2021



Symmetrized Bregman divergence: Geometric reading

[arXiv:2107.05901] 



Statistical divergences between parametric models
= parameter divergences

Statistical divergences between densities of a parametric model         
amount equivalently to (parameter) divergences between corresponding 
parameters:

For which statistical models and statistical divergences, 
do we obtain DM(θ1 : θ2) as a Bregman divergence?



Example 1: Natural exponential family models
• Parametric model                         with densities 

• Examples of natural exponential families: 
• Exponential distributions (continuous): p.d.f. 
• Poisson distributions (discrete): p.m.f. 

• Examples of exponential families with density                     
Gaussian distributions once reparameterized with natural parameters  
θ(λ)=θ(μ,σ2)

• We have                                                                       with Bregman generator:

the log-normalizer convex real-analytic function:

On a Variational Definition for the Jensen-Shannon Symmetrization of Distances Based on the Information Radius, Entropy (2021)



• Let 1, p0(x), …,pD(x) be (D+2) linearly independent densities

• Mixture family                          with densities:

• We have:

• with the Bregman generator = Shannon negentropy:

Usually FM(θ) not in closed-form…
But 2-mixture family of Cauchy  distributions has closed-form! 

Example 2: Mixture family models

The dually flat information geometry of the mixture family of two prescribed Cauchy components, arXiv:2104.13801

Information geometry/reconstruction

Natural parameters



Example 3: q-Gaussians and statistical divergence 

On Voronoi diagrams on the information-geometric Cauchy manifolds, Entropy 22.7 (2020) 

• The set of Cauchy distributions 
form a  q-Gaussian exponential family for q=2

• Deformed exponential family generalize exponential family with deformed 
log/exp functions

• Cumulant function of the Cauchy 2-Gaussian family:

• The following statistical divergence between 2 Cauchy distributions 
amount to a Bregman divergence:

• Bregman generator is the q-free energy for q=2



Information geometry & Bregman divergences
• Bregman divergences are canonical divergences of dually flat spaces 

(Bregman manifolds)

• Information geometry gives a principle to reconstruct the statistical 
divergence corresponding to a Bregman divergence for a Bregman 
generator F(fθ), and not the converse

Bregman generator Bregman divergence Statistical divergence

An elementary introduction to information geometry." Entropy 22.10 (2020)



Class of Bregman generators modulo affine terms 
& KLD between exponential family densities expressed as log-ratio

• Bregman generators are strictly convex and differentiable convex functions 
defined modulo affine terms:  BF=BG iff. F(θ)=G(θ)+Aθ +b

• Choose for any ω in the support  of the exponential family the Bregman 
generator:

• We get:

• By choosing s points:

Computing Statistical Divergences with Sigma Points. GSI 2021
Cumulant-free closed-form formulas for some common (dis)similarities between densities of an exponential family, 
arXiv:2003.02469 



Part II. 
Information geometry & Bregman manifolds

The fabric of information geometry
and the untangling of its geometry, divergence, statistical models

geometry
divergence

statistics

models



Motivation & history of information geometry
• Information geometry studies the geometric structures and statistical invariance 

principles (sufficient statistics, Markov kernels) of a family of probability distributions 
(=statistical model) and demonstrate their use in information sciences (statistics, ML).

• The newly revealed geometric structures (e.g., dually flat space) can also be used in 
non-statistical contexts (e.g., mathematical programming)

• Born as a mathematical curiosity! Use Fisher information matrix as a Riemannian 
metric = Fisher metric [Hotelling 1930] [Rao 1945]

• Decouple metric tensor with Levi-Civita connection, consider a family of affine 
connections [Chenstov 1960-1970’s] : Geometrostatistics

• Statistical curvature, Efron’s e-connection, Dawid’s m-connection  [Efron 1975]
• Consider dual torsion-free affine connections coupled to the metric, explicit 

α-structures [Amari 1980’s] (Amari-Chentsov totally symmetric cubic tensor)
• Non-parametric information geometry [Pistone 1990’s], quantum information 

geometry, algebraic statistics, geometric science of information, etc. 





Part II.A 
- Fisher-Riemannian geometry



• A parametric family of distributions
• Fisher information matrix is positive-semidefinite matrix:

• Under independence, Fisher information is additive:

• Under regularity conditions I (FIM type 1) :
• Under regularity conditions II (FIM type 2):
• FIM can be singular (hierarchical models like mixtures, neural networks in ML)
• FIM can be infinite (irregular models, e.g., support depend on parameters )

Fisher information matrix (FIM)

N., Cramér-Rao lower bound and information geometry, Connected at Infinity II, 2013
Soen and Sun, On the Variance of the Fisher Information for Deep Learning, NeurIPS 2021

Score:



Key concept: Sufficient statistics
• A statistic is a function of a random vector  (e.g., mean, variance)

• A sufficient statistic collect and concentrate from a random sample all 
necessary information for estimating the parameters. 

Informally, a statistical lossless compression scheme…
• Definition: conditional distribution of X given  t   does not depend on θ

• Fisher-Neyman factorization theorem: Statistic t(x) sufficient iff. the density 
can be decomposed as:

Statistical exponential families: A digest with flash cards, arXiv:0911.4863 (2009)



Natural exponential families (NEF)
• Consider a positive measure        (usually counting or Lebesgue)
• A natural exponential family is a parametric family of densities that write as

where F is real-analytic, strictly convex and differentiable:

F: Log-normalizer (also known as partition function, cumulant function, etc.)
Natural parameter space

Barndorff-Nielsen,  Information and exponential families: in statistical theory. John Wiley & Sons, 2014
Sundberg, Statistical modelling by exponential families. Vol. 12. Cambridge University Press, 2019
N., Garcia, Statistical exponential families: A digest with flash cards."   arXiv:0911.4863 



Exponential families (from Natural EFs to EFs)

• Consider a (sufficient) statistic t(x)
• Consider an additional carrier measure term k(x)
• Consider an inner product between t(x) and θ

(usual scalar/dot product) 

Properties:

Exponential families have finite moments of any order

(Hessian of –log pθ(x))
(FIM type 2)



Many common distributions are exponential families in disguise

Statistical exponential families: A digest with flash cards, arXiv:0911.4863 (2009)
Tojo and Yoshino, On a method to construct exponential families by representation theory, GSI 2019 (Springer)



Bhattacharyya arc: Likelihood Ratio Exponential Family
• Bhattacharyya arc or Hellinger arc induced by two mutually absolutely 

continuous distributions p and q (same support       ):

• Log-normalizer F(λ)  (aka cumulant generating function, log partition function):
• Bhattacharyya arc (geometric mixtures) = 1D exponential family:

Log-likelihood sufficient statistics:

Base measure is p0 

Generalizing the Geometric Annealing Path using Power Means, UAI 2021
Likelihood Ratio Exponential Families, NeurIPS Workshop on Deep Learning through Information Geometry 2020



Rao’s length distance (Riemannian distance)

C. R. Rao with 
Sir R. Fisher in 1956

Rao distance in the probability simplex:

Invariant under smooth & bijective reparameterization
E.g., normal family: (μ,σ), (μ,σ2), (μ,log σ)
FIM is covariant under reparameterization

Square root
embedding

(M,g) Riemannian manifold: Parameter space equipped with the Fisher information metric



Rao’s distance between 1D normal distributions
Fisher information metric becomes the Poincare upper plane metric 
after scale change of variable

Poincare upper spaceFIM of  normals

On Voronoi diagrams on the information-geometric Cauchy manifolds, Entropy 22.7 (2020) 

Pseudo-sphere
partial embedding

in R3



In practice, calculating Rao’s distance may be difficult!

1. Need to solve the Ordinary Differential Equation (ODE) for find the 
geodesic:

2. Need to integrate the infinitesimal length elements ds along the 
geodesics

E.g., no closed form
of Rao’s distance 
between multivariate normals



Approximating  geodesics for MVNs: geodesic shooting

Minyeon Han · F.C. Park, DTI Segmentation and Fiber Tracking Using Metrics on Multivariate Normal Distributions, 2014
Calvo, Miquel, and Josep Maria Oller. "An explicit solution of information geodesic equations for the multivariate normal 
model." Statistics & Risk Modeling 9.1-2 (1991): 119-138.

ODE with boundary value conditions



Part II.B 
- Dual information geometry



Another look at Riemannian geodesics: Connections
• Riemannian geodesics are locally minimizing length curves

• The general definition of geodesics is wrt. to an affine connection: 
For Riemannian geodesics, the default connection = Levi-Civita connection. 

This special Levi-Civita connection is derived from the metric tensor g.
• A geodesic γ(t) with respect to a connection ∇ is an ∇-autoparallel curve 

(straight free fall particle in physics ):

where ∇XT is the covariant derivative of a tensor T wrt.  a vector field X
An elementary introduction to information geometry, Entropy 22.10 (2020) 



What makes the Levi-Civita connection so special?
• A connection is described by Christoffel symbols (functions Γ), and the 

geodesics is described by this ODE:

An affine connection defines how to parallel transport a vector from one 
tangent plane to another tangent plane

• Fundamental theorem of Riemann geometry:
Levi-Civita connection is the unique  torsion-free metric connection induced 

by the metric tensor g

An elementary introduction to information geometry, Entropy 22.10 (2020) 



Cylinder is flat
Parallel transport is 
independent of path

Sphere has constant curvature
Parallel transport is path-dependent

∇ : Curvature, torsion, and parallel transport

Torsion tensor
Connections that differ only on torsions yield same geodesics

A connection is flat is there exists locally a coordinate system such that the Christofel
symbols are all zero: Geodesics plotted in that coordinate system are line segments



Dualistic information geometry:
• Given an affine torsion-free connection ∇ and a metric g, we can build 

a unique dual affine torsion-free connection: the dual connection ∇*

such that the metric (inner product) is preserved by the primal and 
dual parallel transports:

• This amounts to say that ∇* is defined uniquely by

• The dual of a dual connection is the primal connection: 
An elementary introduction to information geometry, Entropy 22.10 (2020) 

meaning



• Regular statistical parametric models (identifiable and finite positive-
definite FIM)

• Amari’s α-connections

• 0-connection is Fisher Levi-Civita connection
• 1-connection is exponential connection  (flat for exponential families)
• -1 connection is mixture connection  (flat for mixture families)

Amari/Chentsov’s α-structures  

Amari, Differential geometry of curved exponential families-curvatures and information loss, Annals of Statistics (1982) 



Lauritzen’ statistical manifolds: Cubic tensor   

Beware: Apply also to non-statistical contexts too! 
Dualistic structure with metric  tensor g and cubic tensor C

In a local basis:

C is totally symmetric (= components invariant by index permutation)

Lauritzen, Statistical manifolds, Differential geometry in statistical inference 10 (1987) 

Levi-Civita connection is self-dual with respect to the metric!



Eguchi’s Information geometry of divergences
• Reverse/dual parameter divergence (reference duality)

• Statistical manifold structures:

Eguchi, Geometry of minimum contrast, Hiroshima Mathematical Journal 22.3 (1992) 



Part II.C 
- Bregman manifolds: Dually flat spaces



Dually flat geometry from a convex function

Not necessarily related to statistical models, 
but can always be realized by a regular statistical model

Vân Lê, Hông. "Statistical manifolds are statistical models." Journal of Geometry 84.1-2 (2006)



Crouzeix’s identity: x of Hessians of convex conjugates= Id:

Metric tensor using covariant/contravariant notations

2-covariant metric tensor in local coordinates:

Dual  metric tensor in local coordinates:

An elementary introduction to information geometry." Entropy 22.10 (2020)

Reciprocal basis



Bregman information geometry: Bregman manifolds
• Start from a potential function F(θ)

• Get the dual potential function F*(η)

• Define the primal flat connection:

• Define the dual flat connection:

• Get the dual Bregman divergences
or dual Fenchel-Young divergences

The many faces of information geometry, Notices of the AMS, January 2022



Bregman manifolds vs Hessian manifolds

• Hessian metric wrt. a flat connection ∇, function is 0-form on M:

• Hessian operator:

• Bregman manifold: geometry on an open convex domain:

∇ flat

Here, ∇ = gradient Here, ∇, ∇* = affine flat connections

N., On geodesic triangles with right angles in a dually flat space, Progress in Information Geometry: Theory and Applications, 
Springer, 2021 

Riemannian Hessian metric when



Part III 
Generalized convexity and divergences from 
convexity gaps



Chordal slope lemma & Jensen/Bregman divergences

Bregman
Divergences 

(BDs):

Jensen
Divergence (JD)

[EIG, Entropy 2020]BD as a limit of a scaled JD:



Bregman divergences wrt comparative convexity
• Two abstract means M and N, i.e. 
• Define a function F (M,N) convex if 

• Consider the means regular: homogeneous, symmetric  continuous, and 
increasing in each variable

• Define skew (M,N)-Jensen divergence for a strictly convex (M,N)-function 
for regular means M and N: 

• By analogy of ordinary Bregman divergences obtained as limit of scaled 
skew Jensen divergences, define (M,N)-Bregman divergences:

Generalizing skew Jensen divergences and Bregman divergences with comparative convexity, IEEE Signal Proc. Letters (2017) 



• For a strictly  continuously monotone function γ, define the
weighted quasi-arithmetic means
• Quasi-arithmetic Bregman divergence:

• Consider the ordinary convex function:
• Quasi-arithmetic (rho-tau)-Bregman  divergences is a conformal regular 

Bregman divergence:

Quasi-arithmetic (rho-tau)-Bregman  divergences

Generalizing skew Jensen divergences and Bregman divergences with comparative convexity, IEEE Signal Proc. Letters (2017)
Nock, N., Amari, On conformal divergences and their population minimizers, IEEE Transactions on Information Theory 62.1 (2015)  



Quasi-convex Jensen and Bregman divergences
• Strictly quasiconvex function:

• Quasiconvex Jensen divergence:

• Quasic-convex Jensen divergence is a (Max,A)-Jensen divergence!
N. and Hadjeres, Quasiconvex Jensen Divergences and Quasiconvex Bregman Divergences, Workshop on Joint Structures and 
Common Foundations of Statistical Physics, Information Geometry and Inference for Learning. Springer, 2020.



Multivariate Bregman divergence as a family of 
univariate Bregman divergences

The Bregman chord divergence, GSI, Springer, 2019

1D Bregman generator



Designing divergences by measuring convexity gaps

The Bregman chord divergence, GSI, Springer, 2019



Thank you!

My motto: "Invariance is the only constant in change!" 

https://franknielsen.github.io/

“The only constant in life is change”  -Heraclitus



Adaptive computational geometry (PhD, 1996)

Output-sensitive
2D lower envelopes

convex hull of objects

Output-sensitive peeling 
of k convex or maximal layers

(Pareto front)

Piercing/stabbing
d-dimensional isothetic boxes

Klee’s measure problem

Convex geometry:
Helly and Hellinger

numbers for piercing

Computational geometry:
Output-sensitive algorithms

Combinatorial geometry: 
Piercing/covering:

• Algorithmes géométriques adaptatifs (PhD), Université Nice Sophia Antipolis, 1996 
• Output-sensitive peeling of convex and maximal layers, Information processing letters 59.5 (1996): 255-259.
• An output-sensitive convex hull algorithm for planar objects, Int. J. .Computational Geometry & Applications, 8.01  (1998): 39-65.
• On piercing sets of objects, Proceedings of the twelfth annual symposium on Computational geometry. 1996.
• Fast stabbing of boxes in high dimensions, Theoretical Computer Science 246.1-2 (2000): 53-72.
• On point covers of c-oriented polygons, Theoretical computer science 263.1-2 (2001): 17-29.

CO
N

TEXT



[Voronoi by mapping to the paraboloid] [Bregman Voronoi by mapping to Bregman potential functions]

Bregman voronoi diagrams, Discrete & Computational Geometry 44.2 (2010): 281-307.



The fabric of information geometry
and the untangling of its geometry, divergence, statistical models

geometry

divergence
statistics

models
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