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* Bregman divergences

* Dual information geometry & Bregman manifolds

* Generalized convexity and designing divergences from convexity gaps



Part I.

Bregman divergences:

- Legendre-Fenchel transformation (dual parameterization)

- Fenchel-Young divergences (mixed parameterization)
- Statistical divergences, statistical models & Bregman divergences



Bregman divergences

* F(0): strictly convex and differentiable convex function on an open convex
domain ©

* Design the Bregman divergence as the vertical gap between F(8,) and the
inear approximation of F(8) at 8, evaluated at 9, :
"
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[Bregman 1967]



Bregman divergences: Some properties

e Positive-definite:
* B((0,:6,)>0when8, %86,

* B(8,:6,)=0ifand only if 6, =6,

* Symmetric only for generalized squared Euclidean/Mahalanobis distance,
asymmetric otherwise [N+ 2007]
Q>0 D2 (61.62) = Br, (61,62) = (02— 01)T Q (6o — b1),  Fo(r) =27 Qu

Dg(61,62)* = ||61 — 025 = D7(61,62)

ﬂ[%[N(:ulﬁ E)aN(H?a E)] — D%—l(xu‘la /“'52) — &#Tz_lﬁﬂ

* Does not satisfy the triangle inequality of metric distances
* Smooth/differentiable w.r.t. parameters = divergences (contrast functions)

[N+ 2007] Bregman Voronoi diagrams: Properties, algorithms and applications, arXiv:0709.2196



Bregman divergences: 1% order Taylor remainder

* Bregman divergence (BD) can be interpreted as the mean-value remainder of
a first-order Taylor expansion of F(B) at 0, :

F(6h) = F(ta)+ (01 —0)'VF(0y) +  Rp(b; : 6s)
N —.  — R —
first-order Taylor expansion Taylor remainder
- 1 | |
Rp(0y:60y) = 5(92 —01)" VEF(&)(0y — 01), & € [0,05]

— F(01) — F(6a) — (01 — 02) TV F(s) =: Br(6: : 02)

* Since F is strictly convex, the Hessian is positive-definite:
VEEH) =0 Ve #£0,2"'V2F(@)z >0
* and this proves that BDs are positive-definite:
Re(0y : 0y) = %(92 —0)TV2F(E) (05— 6y) > 0



Scalar and separable Bregman divergences

* D-variate Bregman divergence w.r.t. parameter ¢ = (¢! ... 9P)

* Separable: Bregman generator is sum of univariate/scalar Bregman generators:

D
= F(#)
i—=1
D . .
b2) = > Br,(0] : 03)
i—=1

* For example, generalized square Euclidean distance with diagonal matrix Q

(g = diag(qh . ,Q‘d) BFQ 91 92 ZQE 191 Z BFq Hz 91



Extended Kullback-Leibler divergence

* Extended Kullback-Leibler divergence (eKL) is a D-dimensional separable
Bregman divergence induced by the Shannon negentropy Bregman
generator:

Dexr[py, : P : ZH‘ log —+H* 0i =: Br (01 : 65)

Foxcs(f Z 0 log 0F — ¢

* p* means a positive measure (not necessarily normalized to a probability)
* When p* is normalized:

i
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3
DekiLlpr, : Pyl Z""E 10%

* eKL divergence also called extended relatlve entropy in information
theory

Lafferty, Lebanon, Boosting and maximum likelihood for exponential models, NeurlPS 14 (2002)



Discrete Kullback-Leibler divergence:
A non-separable Bregman divergence

* The KLD between two categorical distributions a.k.a. multinoulli amounts
to a non-separable Bregman divergence on the natural parameters of
the multinoulli distributions interpreted as an exponential family.
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DxL[pr, : Py : Z)ﬁ log /\ —: Bp,, (01 : 62) 0" = log

D
Fxp,(0) = log(1 + Z exp(#;)) =: LogSumExp_ (0, ....0p)
i=1

LogSumExp is only convex but LogSumExp, is strictly convex  [NH2019]

[NH 2019] Monte Carlo information-geometric structures, Geometric Structures of Information, 2019.
Guaranteed bounds on information-theoretic measures of univariate mixtures using piecewise log-sum-exp inequalities, Entropy, 18(12), 2016



Legendre-Fenchel transformation

* Consider a Bregman generator of Legendre-type (proper, lower semi-
continuous). Then its convex conjugate obtained from the Legendre-
Fenchel transformation is a Bregman generator of Legendre type.

Concave programming:

PO = sldn - F0)

0<0 F*(n) =sup{f@'n—F(0)} = sup{E(0)}
— — éﬂg{F(H) — QTT?} fee fce
=

VE#)=n—VF(#)=0=n=VF(0)

* Legendre-Fenchel transformation applies to any multivariate function
* Analogy of the Halfspace/Vertex representation of the epigraph of F
* Fenchel-Moreau’s biconjugation theorem for F of Legendre-type: F = (F")

[Touchette 2005] Legendre-Fenchel transforms in a nutshell
[N 2010] Legendre transformation and information geometry



F(8)

Reading the Legendre-Fenchel transformation

* Legendre-Fenchel transformation also called the slope transform
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F*(n) = 6n—F() =nlogn—rn

(Here, F was chosen as the cumulant function of the Poisson distributions)



Legendre-Fenchel transform:
Mixed coordinates and Fenchel-Young divergence

* Dual parameterizations of epigraph: ¢ =VF*(n) and 7= VF(0)
* Convex conjugate expressed as: F*(n) =1'VF*(n) — F(VF*(n))

* To get in closed form the convex conjugate F*, we need VF'(n), i.e.,
invert VF(0)

* Fenchel-Young inequality: F(#) + F*(n2) > 6, n
with equality if and only if 7, = VF(6,)
* Fenchel-Young divergence use mixed parameterization 6/n:
Yep- (01 :n2) == F(01) + F*(2) — 0 12 = Y p(12, 01)



Dual Bregman and dual Fenchel divergences
* Identity of dual Bregman divergences: By (0, : 6y) = Bp- (12 : m1)
* In general, dual or reverse divergence: D*(¢, : 6,) := D(6; : 6;)

* Primal, dual or mixed parameterizations of Bregman divergences:




3-parameter identity of Bregman divergences

* Generalize the law of cosines for the squared Euclidean distance

Bp (61 : 02) = Bp(01 : 03) + Bp(03 : 02) — (61 — 03) T (VF(6y) — VF(63)) > 0

C

a

b
 =a?+b%—2abcosC

* Yields a generalization of the Pythagorean theorem
when (6, —03)" (VF(6y) — VF(63)) =0

Dp(p:r))=Dr(p:q)+ Dr(qg:r)

Bp(0(p) : 0(r)) = Be(0(p) : 6(q)) + Br(0(q) : 6(r))
@(p) — 0(q)) " (n(r) —n(q)) = 0 & 4q(0) Ly 4,.(0)
On geodesic triangles with right angles in a dually flat space, Progress in Information Geomeury: 1neory anu Appucauons, zuZl



4-parameter identity of Bregman divergences

* Parallelogram identity

Bp(, - 0) + Bp(fy - 0) = By (91 0 ;92) + By (92 . “’9) + 9By (91;92 :9)

2

Bp(01:0)+ Br(fs : 0 146y

+BF -I-QB 7'
* In Euclidean geometry: N
2 2 2 2
AP 2BCT = ACTH BD 210117 + 21011 = 161 — 62> + 1161 + 2]

On geodesic triangles with right angles in a dually flat space, Progress in Information Geometry: Theory and Applications, 2021




Symmetrized Bregman divergence: Geometric reading

m
12
-
0 0 R
- 01 — 02 . 0 = VEF*(n)
01
Br(6y : 6;) = / (F'(0) — F'(62))d0  Sp(01.602) = DBp(0y:062)+ Bp(ts:0;)
9312 = Bp(61:02) + Bp«(n1:12)
Bro(mi6) = [ (F(n) = F () — (61— 6)T (1~ o)
M1

[arXiv:2107.05901]



Statistical divergences between parametric models
= parameter divergences

Statistical divergences between densities of a parametric model F = {fo(x)}s
amount equivalently to (parameter) divergences between corresponding
parameters:

Dl fo, : fo,] = Daq(01 : 0)

For which statistical models and statistical divergences,
do we obtain D,,(8, : 8,) as a Bregman divergence?



Example 1: Natural exponential family models

* Parametric model & = {¢y(x)}, with densities ey(x) = exp (Zt 0) + k(a ))

* Examples of natural exponential families:
* Exponential distributions (continuous): p.d.f. Ae ™™ >0

* Poisson distributions (discrete): p.m.f. Pr(X—F) — Ae™?
k!
* Examples of exponential families with density e(x)=exp (Zt )+k(:r'))

Gaussian distributions once reparameterized with natural parameters
6(A)=6(u,0°)

* We have Dy e, : ea,] = Br*(01: 02) = Bp(f : 6;) with Bregman generator:
— —

D¢ (61:62)
the log-normalizer convex real-analytic function: F:(0) = (/ exp( ZI‘ )0i + k(x)) dp(a ))

On a Variational Definition for the Jensen-Shannon Symmetrization of Distances Based on the Informatlon Radius, Entropy (2021)



Example 2: Mixture family models

* Let 1, py(x), --.,pp(x) be (D+2) linearly independent densities

D
* Mixture family M = {m4(r)}o with densities: ,,,(, Zulpa (1 _ Z“) po(z)

* We have:  Dxvlme, < me,] = By (01 : 02) f = (wq,....wp)
Dmglrﬂz)

Information geometry/reconstruction

* with the Bregman generator = Shannon negentropy:

Fpa(0) = /m.g(:;f;f) log mg(x)dp(x) Natural parameters

Usually F,,(6) not in closed-form...
But 2-mixture family of Cauchy distributions has closed-form!

The dually flat information geometry of the mixture family of two prescribed Cauchy components, arXiv:2104.13801



Example 3: g-Gaussians and statistical divergence

* The set of Cauchy distributions c¢:= {m(l‘)iz e fx_ . A=(l,s) € B=R x R+}

form a g-Gaussian exponential family for g=2

* Deformed exponential family generalize exponential family with deformed
log/exp functions

* Cumulant function of the Cauchy 2-Gaussian family: r@) = _g_z - fo ~1.
2 2
(61,62) = (271, %)

* The following statistical divergence between 2 Cauchy distributions
amount to a Bregman divergence:

1 r3, (%)
Pralpnpral = (/p,:l(.r)dr_l) =BG

* Bregman generator is the g-free energy for g=2

On Voronoi diagrams on the information-geometric Cauchy manifolds, Entropy 22.7 (2020)



Information geometry & Bregman divergences

* Bregman divergences are canonical divergences of dually flat spaces
(Bregman manifolds)

* Information geometry gives a principle to reconstruct the statistical
divergence corresponding to a Bregman divergence for a Bregman
generator F(fy), and not the converse

Bregman generator Bregman divergence Statistical divergence

Fe(6) = log (/ eXp(thi(xwi * k(lm))d”(x)) Br(0y : 0y) Diulpr i pal =Dwlpo ipr| = »

BF(91 . 92) = D;{L[eﬁl . 692] = DKL[EBQ . 831]

An elementary introduction to information geometry." Entropy 22.10 (2020)



Class of Bregman generators modulo affine terms
& KLD between exponential family densities expressed as log-ratio

* Bregman generators are strictly convex and differentiable convex functions
defined modulo affine terms: B.=B iff. F(6)=G(0)+A06 +b

* Choose for any w in the support of the exponential family the Bregman
Benerator: Fu(6) := — log(po(w)) = F(6) — (67 t(w) + k(w))

~

T

affine term in ¢

Py (w)
P, (w)

* We get: Dy [ps, : pas] = log ( ) +(0(2) — 0(M)) T (H(w) — VF(B(N))), Vwe X

1 5 w 1 S
* By choosing s points: Dxwi[px : P —;2 (p"” )such that ;2 wi) = Ep,, [t(x)]

p)&g "-‘-’I)

Computing Statistical Divergences with Sigma Points. GSI 2021
Cumulant-free closed-form formulas for some common (dis)similarities between densities of an exponential family,
arXiv:2003.02469



Part Il.
Information geometry & Bregman manifolds

_ statistics
divergence ﬁ- -
—-“ geometry

The fabric of information geometry
and the untangling of its geometry, divergence, statistical




* Information geometry studies the geometric structures and statistical invariance
principles (sufficient statistics, Markov kernels) of a family of probability distributions
(=statistical model) and demonstrate their use in information sciences (statistics, ML).

 The newly revealed geometric structures (e.g., dually flat space) can also be used in
non-statistical contexts (e.g., mathematical programming)

Born as a mathematical curiosity! Use Fisher information matrix as a Riemannian
metric = Fisher metric

Decouple metric tensor with Levi-Civita connection, consider a family of affine
connections : Geometrostatistics

Statistical curvature, Efron’s e-connection, Dawid’s m-connection

Consider dual torsion-free affine connections coupled to the metric, explicit

o-structures (Amari-Chentsov totally symmetric cubic tensor)

Non-parametric information geometry , quantum information
geometry, algebraic statistics, geometric science of information, etc.
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Part |I.A
- Fisher-Riemannian geometry



Fisher information matrix (FIM)

* A parametric family of distributions P = {;,},c6

Fisher information matrix is positive-semidetinite matrix:

Score: s(f) := Vylogpe(x) Ix(0) = Cov(se) X = (v1.....2p)" ~ pe

Under independence, Fisher information is additive:
Y = (YlY;?) = ]}/(9) = "IZ.IX(H)

-/ ™~iid Pe
Under regularity conditions | (FIM type 1) : ! ((0) = Ep, [(Vologps) (Vologps) ']
Under regularity conditions Il (FIM type 2):  1,(6) = —E,, [V;log py|
FIM can be singular (hierarchical models like mixtures, neural networks in ML)
FIM can be infinite (irregular models, e.g., support depend on parameters )

N., Cramér-Rao lower bound and information geometry, Connected at Infinity Il, 2013
Soen and Sun, On the Variance of the Fisher Information for Deep Learning, NeurlPS 2021



Key concept: Sufficient statistics

* A statistic is a function of a random vector (e.g., mean, variance)

* A sufficient statistic collect and concentrate from a random sample all
necessary information for estimating the parameters.

Informally, a statistical lossless compression scheme...
* Definition: conditional distribution of X given t does not depend on 0

Pr(x|0) = Pr(x|t)
* Fisher-Neyman factorization theorem: Statistic t(x) sufficient iff. the density

can be decomposed as: p(m, A) — a,(a';)b)\ (t(m))

Statistical exponential families: A digest with flash cards, arXiv:0911.4863 (2009)




Natural exponential families (NEF)

* Consider a positive measure [ (usually counting or Lebesgue)
* A natural exponential family is a parametric family of densities that write as

p(x;0) = exp(fx — F(0))

where F is real-analytic, strictly convex and differentiable:

F(0) = Iog/exp(@x)du(x)
Natural parameter space (& — {9 . fexp(ﬁag)dﬂ(:c) < oo}

F: Log-normalizer (also known as partition function, cumulant function, etc.)

Barndorff-Nielsen, Information and exponential families: in statistical theory. John Wiley & Sons, 2014
Sundberg, Statistical modelling by exponential families. Vol. 12. Cambridge University Press, 2019
N., Garcia, Statistical exponential families: A digest with flash cards." arXiv:0911.4863



Exponential families (from Natural EFs to EFs)

* Consider a t(x)
e Consider an k(x)
e Consider an between t(x) and 0

(usual scalar/dot product)

po(z) = exp((0,t(x)) — F(0) + k(z))

Properties: E[t(X)] — VF(Q) (Hessi f—I (x))
essian of —log py(Xx
Cov[t(X)] = V*F(0) = I(0) (FIM type 2) e

Exponential families have finite moments of any order



Many common distributions are exponential families in disguise

Probability measure

| Parametric Non-parametric
Exponential families Non-exponential families
Univariate | Multivariate
| Uniform |  |Cauchy | [Lévy skew a-stable
uniparameter Bi-parameter multi-parameter

|Gamma T'| | Multinomial | | Dirichlet | | Weibull

Exponential | | Rayleigh | Gaussian |

| Bernoulli | | Poisson |

Statistical exponential families: A digest with flash cards, arXiv:0911.4863 (2009)
Tojo and Yoshino, On a method to construct exponential families by representation theory, GSI 2019 (Springer)



Bhattacharyya arc: Likelihood Ratio Exponential Family

* Bhattacharyya arc or Hellinger arc induced by two mutually absolutely
continuous distributions p and q (same support X ):

1—\ A

p (@) () G A

E(p,q) = {p)x (7) = . A e (0, 1)} Z\ (p.q) = / p'~Mw)g (@) dp(e)
Z3 (p. q) v

* Log-normalizer F(A) (aka cumulant generating function, log partition function):

e Bhattacharyya arc (geometric mixtures) = 1D exponential family:

P @) () Log-likelihood sufficient statistics:
pa(x) = Z%(p. q) P1 (T)
AP 4 t(x) = log ( )
— pol) exp (A log (pl(‘*)) —log Z{ (p. q)) | Po()
po() Base measureis py (2 := log po(x)

= exp (At(x) — F(N) + k(x))
F(\) = log(Z{(p.q)) = log (/ pt (T)q)‘(r)dy(r))

X

= =Dy [p:q

Generalizing the Geometric Annealing Path using Power Means, UAI 2021
Likelihood Ratio Exponential Families, NeurlPS Workshop on Deep Learning through Information Geometry 2020



Rao’s length distance (Riemannian distance)

(M,g) Riemannian manifold: Parameter space equipped with the Fisher information metric

SN db;(t) db;(t)
d 91 99 _]gﬂn]; \ZZgij(g(t)) 7 (;I‘ dt.

i=1 j=1

Invariant under smooth & bijective reparameterization
E.g., normal family: (1,0), (1,0%), (4,log o)
FIM is covariant under reparameterization

C. R. Rao with
Sir R. Fisher in 1956

Rao distance in the probability simplex: Square root

"\ embedding
d |
pruR(p. q) = 2arccos (Z )\;/\g)

3
1=0




Rao’s distance between 1D normal distributions

Fisher information metric becomes the Poincare upper plane metric
after scale change of variable

Poincare upper space

5 0
0 =

FIM of normals »

|
9i5 (1, 0)] p = [ % ;}E ] % 93] =
|

.l

Pseudo-sphere

)2 Y partial embedding
dist({x1,y1), ( )) = arcosh| 1+ (@2 —21) + (@2 —91) in R3

On Voronoi diagrams on the information-geometric Cauchy manifolds, Entropy 22.7 (2020)



In practice, calculating Rao’s distance may be difficult!

E.g., no closed form d6;(t) do: (1)
of Rao’s distance d(6',6%) = %ﬂn/ Zzgzj 0(t)) dt. ;’}t dt.
between multivariate normals i=1j=1

1. Need to solve the Ordinary Differential Equation (ODE) for find the

geodesic:
T R— . db; db;

a2 ZZF“‘dt a =0 k=Lep

i=1 j=1

1 o~ [(0gim(0)  9g:m(0) 3gi:(0)\ . -
Fk: _Z ( 989( ) + gj&f)( ) o %g)( ))Q’ k(g): Er.:-"ak:l:“*ap:
7 1 m

2. Need to integrate the infinitesimal length elements ds along the
geodesics



Approximating geodesics for MVNs: geodesic shooting

Algorithm 1 Shooting method for minimal geodesics on N (n)

Given: Initial point Py = (pg. Xo), final point P; = (py, X).
Output: Minimal geodesic P(t) = (u(r), X (1)), t € [0, 1], such that P(1) = (1. Xy).

Initialization: Choose initial velocities V (0) = (j1(0), 3(0)) (e.g., zeroes), initial values for € (1075), error = 106.

while error > € do

Numerically integrate the geodesic equations (13), (14) for given initial conditions (o, Xp, f1o. o) fromr=0tor=1 "%

Denote the solution by (pe(r), X' (1))
Set W(1) = (W, (1), We(1)) = () — p(1), £y — E(1));

Calculate error = |W(1)| p, = JW#(I}T W) + tee T we)2);

Numerically integrate the parallel transport equations (18) and (19) for given trajectory (p(r), X'(r)) and final veloci

ties W(1), backward in time fromf =1tor=0;

Numerically calculate Jacobi field J (1) from (22),
exppu(V(O)—l-czW{D))—expPu(V{O])
I = -
Determine proper update size s:
5 = (W(L).J(1)) peyy
LT TIImiE,,
if I| W(l)”p(l) = 0.05 then
s =0.05/|W(Dl paysi:
else
s =s5|;
end if
V(0) < V(0) +sW(0);
end while

, where « is sufficiently small value and we use

€
WOz,

0.5

@

05

| w\\\\\\

05

-05 0 05 1 15 2 25 3 35 4 45

(vi)

ODE with boundary value conditions

Minyeon Han - F.C. Park, DTl Segmentation and Fiber Tracking Using Metrics on Multivariate Normal Distributions, 2014
Calvo, Miquel, and Josep Maria Oller. "An explicit solution of information geodesic equations for the multivariate normal

model." Statistics & Risk Modeling 9.1-2 (1991): 119-

138.



Part I1.B
- Dual information geometry



Another look at Riemannian geodesics: Connections

* Riemannian geodesics are locally minimizing length curves

QG ‘
J H!ﬂ ‘v
: : !J--f i L ;

* The general definition of geodesics is wrt. to an affine connection:
For Riemannian geodesics, the default connection = Levi-Civita connection.
This special Levi-Civita connection is derived from the metric tensor g.
* A geodesic y(t) with respect to a connection V is an V-autoparallel curve

(straight free fall particle in physics ): _ _ 1!
Viy =0, 7= dr v(t)

where V,T is the covariant derivative of a tensor T wrt. a vector field X
An elementary introduction to information geometry, Entropy 22.10 (2020)



What makes the Levi-Civita connection so special?

* A connection is described by Christoffel symbols (functions ), and the
geodesics is described by this ODE:  4(t) + I} (t)7(t) =0, +'(t) = x" o y(t),

An affine connection defines how to parallel transport a vector from one
tangent plane to another tangent plane

 Fundamental theorem of Riemann geometry:

Levi-Civita connection is the unique torsion-free metric connection induced

by the metric tensor g ﬁ 15[
z 1 (u,0) 0) = u, v vt
Lcrﬁ 2IL H (3:3’” + a;’S:‘f oF afS:‘j} c(0)=c(t)  c(0)=c(t) /[ .p)

An elementary introduction to information geometry, Entropy 22.10 (2020)



V : Curvature, torsion, and parallel transport

C

Parallel transport is Sphere has constant curvature
independent of path Parallel transport is path-dependent

A connection is flat is there exists locally a coordinate system such that the Christofel
symbols are all zero: Geodesics plotted in that coordinate system are line segments

Torsiontensor T(X,Y):=VxY - VyX — [X,Y]
Connections that differ only on torsions yield same geodesics



Dualistic information geometry: (M,g,V,V*)

* Given an affine torsion-free connection V and a metric g, we can build
a unique dual affine torsion-free connection: the dual connection V*
such that the metric (inner product) is preserved by the primal and
dual parallel transports:

A% v
(U,0)c(0) = < H u, ]_[ v .
() c(t)

c(0)=c(t) ¢c(0)=c

g (v, 2) = g (1L 1, 105, v2)

 This amounts to say that V" is defined uniquely by
Xe(Y,Z) =¢(VxY,Z)+¢(Y,Vx2),
meaning Xpgp(Yp, Zp) = §p((VxY)p, Zp) + 8p(Yp, (VXZ))).

* The dual of a dual connection is the primal connection: (V)" = V.
An elementary introduction to information geometry, Entropy 22.10 (2020)



Amari/Chentsov’s a-structures
{(Pa Py, Pv—a, Pv+a)}aeR

e Regular statistical parametric models (identifiable and finite positive-
definite FIM) P:={ps(z) }yc0
 Amari’s a-connections pI%i1(0):= Eo [(aga,-; + l%ana,-;) (&H'J] .

[(0; z):=log L(6; x) = log py(z)

e 0-connection is Fisher Levi-Civita connection
e 1-connection is exponential connection (flat for exponential families)
* -1 connection is mixture connection (flat for mixture families)

Amari, Differential geometry of curved exponential families-curvatures and information loss, Annals of Statistics (1982)



Lauritzen’ statistical manifolds: Cubic tensor

Beware: Apply also to non-statistical contexts too! (M7 g, C)
Dualistic structure with metric tensor g and cubic tensor C
C(X, Y, Z)::(VXY— V}Y, Z) C:Vg

Ciji = C(8;,0;,0;) = (V,0; — V3, 8;, )

C is totally symmetric (= components invariant by index permutation)
Inalocal basis: Clip:=I'* — T*%.
‘ gk - oy 1]

LTy =0 ‘ Levi-Civita connection is self-dual with respect to the metric!

Lauritzen, Statistical manifolds, Differential geometry in statistical inference 10 (1987)



Eguchi’s Information geometry of divergences

* Reverse/dual parameter divergence (reference duality)
D*(6:6).=D(0 :0) (D*)* =D

e Statistical manifold structures:

D_ D D* D_ D
(M,%g,7V,= V) (M,"g,~C)
Dg:: _ai,jD(e : 9’)|9:9’ =7 9, DCz-jk = Uik — Drijk
DF@'jk:: —a,;j,kD(e . 9,)‘9:9"
D Digni= — 0k D(0: 6') gy » DYyt = D'y

» {(M,DQ,DC“) = (M,Pg,PV ", (PV ") = DV“)}M_ZR

Eguchi, Geometry of minimum contrast, Hiroshima Mathematical Journal 22.3 (1992)



Part Il.C
- Bregman manifolds: Dually flat spaces



Dually flat geometry from a convex function

Exponential family Mathematical programming

LP, SDP (CP)

cumulant function

barrier function

Linear systems

(ARMA time-series)

D[]_al Geonletl‘}r strictly proper score

*— Game theory

mduced by a

negative entropy

convex function

/ ‘\F
Mixture family

(only component weights vary)

novel domain

Not necessarily related to statistical models,
but can always be realized by a regular statistical model

Van Lé, Hong. "Statistical manifolds are statistical models.” Journal of Geometry 84.1-2 (2006)



Metric tensor using covariant/contravariant notations

$2
2-covariant metric tensor in local coordinates: (er.69) = &7
w72 A
9i;(0) = V°F(0) .

Dual metric tensor in local coordinates: Reciprocal basis
BTN KU\ XT2
9”7 (n) =g (n) =VF(n)

Crouzeix’s identity: x of Hessians of convex conjugates= |d:

V2F(0)V F*(n) =1

An elementary introduction to information geometry." Entropy 22.10 (2020)




Bregman information geometry: Bregman manifolds

e Start from a potential function F(0)
Fg=V2F(0)
g p—
* Get the dual potential function F'(n)

0:=0(P) ) _ VE(6) * Define the primal flat connection:

" FTun(0) = 0
ﬁ 9=VF*(?I)/ ij( )

e Define the dual flat connection:

C -f;..-v -

rimal geodesi

Dual geodesic ,.}_..V*

manifold P

V-affine coordinate system 6 V*-affine coordinate system 7

m = n(P) FF*ij (77) . 0
Potential function F(f) = » Dual potential function F*(n)
Legendre-Fenchel transform o

. Get the dual Bregman divergences
F*(n) = suppcp{d n— F(0)} or dual Fenchel-Young divergences

The many faces of information geometry, Notices of the AMS, January 2022



Bregman manifolds vs Hessian manifolds

* Hessian metric wrt. a flat connection V. function is O-form on M:
Riemannian Hessian metric when ¢ = VZ[Fy,

* Hessian operator: (V*Fy) (X.Y) := (Vxd) (Fy(Y)) = X(dFy(Y)) — dFy (VxY)

82FM I 8FM 2 ‘ ‘ 82FM'
_T* VFy (0,i.0,5) = ——

90 i ok m M (O 00i) = 5

* Bregman manifold: geometry on an open convex domain:
Here, V = gradient Here, V, V' = affine flat connections

g(0) = V°F(0) mmmmm) V : T,(0) =0
g*(n) = V2F*(n) ‘ V* o TR () =0

N., On geodesic triangles with right angles in a dually flat space, Progress in Information Geometry: Theory and Applications,
Springer, 2021

V2Fy (0, 0,) =




Part Il
Generalized convexity and divergences from
convexity gaps



Chordal slope lemma & Jensen/Bregman divergences

Jensen
Divergence (JD)

slope(T'p, ) < slope([P,P]) < slope([P, Pa]) < slope( | PP

'w[”” F(dy=F{#,) F(#)=F(i)
L II|; - | ol 1 4 21 4 1 J
I () < [ < fly — ity <

F(6) — F (6,)

F(62) — F(6,)
(6 — 6) ’

<

(62 —61)

P, = (0,, F(0.
Py = (61, F(6:)) * Bk (62, F(62))

F(6) — F (61)

P=(0.F6) :
I 92(1—&)91 —+—£c92§

° ° ® >
91 f} HE

IF(H'] 32) = (1 - H)F(Hl) -|-£IF(92) —F (1 - II)Q] +III92) >0
Bregman
Divergences F(62) — F(61) — (62 — 61)F'(6y)

! F(62) — F(6,) g
O ‘EF(ﬂz)»

BD as a limit of a scaled JD: Bp(#; : 62) = lim 1—o) Jra(01:02)  [EIG, Entropy 2020]

a—1— (¥



Bregman divergences wrt comparative convexity

» Two abstract means M and N, i.e. min{p,q} < M(p,q) < max{p.q}.
* Define a function F (M.N) convex if
F(M(p,q)) < N(F(p),F(q)), Vp,q€X,

e Consider the means regular: homogeneous, symmetric continuous, and
increasing in each variable

* Define skew (M,N)-Jensen divergence for a strictly convex (M,N)-function
for regular means M and N:

T (p: ) = Na(F(p), F(q)) — F(Ma(p, 9))-
* By analogy of ordinary Bregman divergences obtained as limit of scaled
skew Jensen divergences, define (M,N)-Bregman divergences:

. 1 N | 1 ,_
Bp " (p:g) = lm —m—sJpi (pig) = lim (Na(F(p), F(q))) — F(Ma(p. q)))

a—=1- a(l — a)

Generalizing skew Jensen divergences and Bregman divergences with comparative convexity, IEEE Signal Proc. Letters (2017)



Quasi-arithmetic (rho-tau)-Bregman divergences

* For a strictly continuously monotone function y, define the
weighted quasi-arithmetic means M, . (z,y) =7 (1 —a)y(z) +ay(y))
* Quasi-arithmetic Bregman divergence:

1
2T 5 — T
BF (qp)_gtl_% &(1_{1)

(Mr.o(F(p), F(q))) — F (Mp,a(p,q)))

1
2,7 . — s
By (q:p) = lim o1 —o)

(M7.o(F(p), F(q))) — F (Mp.a(p,q)))

» Consider the ordinary convex function: G(x) = 7(F(p~'(x)))

e Quasi-arithmetic (rho-tau)-Bregman divergences is a conformal regular

Bregman divergence: ot 1
By (p:9) = gy Bolep) : pla))

Generalizing skew Jensen divergences and Bregman divergences with comparative convexity, IEEE Signal Proc. Letters (2017)
Nock, N., Amari, On conformal divergences and their population minimizers, IEEE Transactions on Information Theory 62.1 (2015)




Quasi-convex Jensen and Bregman divergences

e Strictly quasiconvex function: Q((8¢'),) < max{Q(0),Q(¢#)}, 0#6 €O

o /ol

* Quasiconvex Jensen divergence:
“xJEO: ) = max{Q(h),Q(¢)} — Q((8)a) > 0.
= max{Q(0),Q(#)} — Q((1 — a)f + af")).

* Quasic-convex Jensen divergence is a (Max,A)-Jensen divergence!

(00", := (1 — )8 + ab’

N. and Hadjeres, Quasiconvex Jensen Divergences and Quasiconvex Bregman Divergences, Workshop on Joint Structures and
Common Foundations of Statistical Physics, Information Geometry and Inference for Learning. Springer, 2020.



Multivariate Bregman divergence as a family of
univariate Bregman divergences

Proposition A multivariate Bregman divergence Br(0:1 : #2) can be written equivalently as a univariate

Bregman divergence B, , (0:1):

Vﬁ]l,f;g < 6.} Bp(gl : 92) — BFﬂl,ﬂg (U : 1)j

where
Fgl 02 (H) = F(gl —|— u(ﬁ'g — 31))

is a univariate Bregman divergence.

Proof: The univariate functions Fp, g, are proper 1D Bregman generators:
We have the directional derivative:

1D Bregman generator

V92—91F91,92(H) —  lim F(Ql + (E + ’H-)(HQ — 91)) — F(Ql + 'U([(?'Q _ 91))1

e—0 €

= (B —0,)TVEF(0 +u(fs —61)),

Since Fp, 9,(0) = F(61), Fy, 9,(1) = F(f2), and Fél:‘gﬂ (u) = Vg,—o, Fo, 0,(u), it follows that

BFB[,E‘Q (0 : 1) — Fg],gg(ﬂ) - Fﬂl,ﬂz(l) - (D - 1)V92—91F91,92(1J1

= F(6;)— F(03) + (6 — 6,) ' VE(63) = Bp(by : 63).

The Breeman chord divereence. GSI. Sprineer. 2019



Desighing divergences by measuring convexity gaps

Upper chord U

vertical
chord gap

TENe )

JF({EH'F)H . (ﬂﬂ’ :I : ELUWE'I' chord L
Yy - — . -
7] (66'), (06') 4 0’

(69'),

((66")a(66")5)x

Jp7(0:0') := (F(O)F(9'))y — (F((00')a)F((06')5)) 3=a .

B (6, : 65)

: 83}, F{(hf2)a))

— tangent line

Br(6, : 02) ;Hﬂlﬁz]d.F{{alﬂf}-ﬂ :
: - [ 0
. . . -
0, (61602)a 6:62)s 6 | o

chord line

F(8;) = F ((0102)a) — (61 — (0:162)a) " VF ((6102)a)

B:‘:'f‘('gl :Hg) =
= F(6,) = F((6102)a) — a6, - HE)TVF((EIHE)“)‘

The Bregman chord divergence, GSI, Springer, 2019



Thank youl!

“The only constant in life is change” -Heraclitus

My motto: "Invariance is the only constant in change!”

https://franknielsen.github.io/

Introduction
to HPC with

MPI for Data
Science




Adaptive computational geometry (PhD, 1996)

1X311NOD

Computational geometry: Combinatorial geometry:
Output-sensitive algorithms Piercing/covering:
— use [ e | A [ oo JRIRBRRREN = . i oo LA 1587 =]
Layer 1 : .” EIE-E'_ i Lii : Objects k Time
o ﬁ: : == homothetic triangles 2 | O(n) (Helly-type)
. . i . . d 4, 5-oriented polygons 2 O(nlogn)
Y - 155 ___ d-dim. c-oriented polytopes | 2 | O(n™™{L514} log n)
Lﬂ - ;E Siinnianis (d+ 1)-oriented simplices |2 O(fn@1 logn)
i I” quw = =a drdim. boxes 2 | O(n) (Helly-type)
ml_ e = homothetic triangles 3 O(nlogn)
Output-sensitive Output-sensitive peeling Piercing/stabbing Convex geometry:
2D lower envelopes of k convex or maximal layers d-dimensional isothetic boxes Helly and Hellinger
convex hull of objects (Pareto front) Klee’s measure problem numbers for piercing

Algorithmes géométriques adaptatifs (PhD), Université Nice Sophia Antipolis, 1996

Output-sensitive peeling of convex and maximal layers, Information processing letters 59.5 (1996): 255-259.

An output-sensitive convex hull algorithm for planar objects, Int. J. .Computational Geometry & Applications, 8.01 (1998): 39-65.
On piercing sets of objects, Proceedings of the twelfth annual symposium on Computational geometry. 1996.

Fast stabbing of boxes in high dimensions, Theoretical Computer Science 246.1-2 (2000): 53-72.

On point covers of c-oriented polygons, Theoretical computer science 263.1-2 (2001): 17-29.




&7

(b) Itakura-Saito divergence

(a) Squared Euclidean distance

Figure 13.2. Voronoi diagram and convex polyhedron.

[Voronoi by mapping to the paraboloid] [Bregman Voronoi by mapping to Bregman potential functions]

Bregman voronoi diagrams, Discrete & Computational Geometry 44.2 (2010): 281-307.



The fabric of information geometry
and the untangling of its geometry, divergence, statistical

divergence

ﬁ statistics

geometry
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