


8
Hierarchical clustering

A concise summary is provided at the end of this chapter, in §8.7.

8.1 Agglomerative versus divisive hierarchical
clustering, and dendrogram representations

Hierarchical clustering is yet another technique for performing data exploratory

analysis. It is an unsupervised technique. In the former clustering chapter, we

have described at length a technique to partition a data-set X = {x1, ..., xn}
into a collection of groups called clusters X = �k

i=1Gi by minimizing the k-

means objective function (i.e., the weighted sum of cluster intra-variances): In

that case, we dealt with flat clustering that delivers a non-hierarchical partition

structure of the data-set. To contrast with this flat clustering technique,

we cover in this chapter another widely used clustering technique: Namely,

hierarchical clustering.

Hierarchical clustering consists in building a binary merge tree, starting

from the data elements stored at the leaves (interpreted as singleton sets) and

proceed by merging two by two the “closest” sub-sets (stored at nodes) until

we reach the root of the tree that contains all the elements of X. We denote

by Δ(Xi, Xj) the distance between any two sub-sets of X, called the linkage

distance. This technique is also called agglomerative hierarchical clustering since

we start from the leaves storing singletons (the xi’s) and merge iteratively
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subsets until we reach the root.
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Figure 8.1 Drawing a dendrogram by embedding the nodes on the plane

using a height function.

The graphical representation of this binary merge tree is called a dendro-

gram. This word stems from the greek dendron that means tree and gramma

the means draw. For example, to draw a dendrogram, we can draw an internal

node s(X ′) containing a subset X ′ ⊆ X at height h(X ′) = |X ′|, where | · |
denotes the cardinality of X ′, that is, its number of elements. We then draw

edges between this node s(X ′) and its two sibling nodes s(X1) and s(X2) with

X ′ = X1∪X2 (and X1∩X2 = ∅). Figure 8.1 depicts conceptually the process of

drawing a dendrogram. There exists several ways to visualize the hierarchical

structures obtained by hierarchical clustering. For example, we may use special

Venn diagrams using nested convex bodies, as depicted in Figure 8.2.
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Figure 8.2 Several visualizations of a dendrogram: dendrogram (left) and

equivalent Venn diagram (right) using nested ellipses (and disks).

Figure 8.3 shows such an example of a dendrogram that has been drawn

from a agglomerative hierarchical clustering computed on a data-set provided
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in the free multi-platform R language1 (GNU General Public License). The

(short) R code for producing this figure is the following:

d <− d i s t ( as .matrix ( mtcars ) ) # f ind d i s t ance matrix

hc <− hc lu s t (d , method=”average ” )

plot ( hc , xlab=”x” , ylab=” he ight ” , main=” H i e r a r c h i c a l

c l u s t e r i n g ( average d i s t anc e ) ” , sub=” ( ca r s ) ” )

We have chosen the Euclidean distance D(xi, xj) = ‖xi − xj‖ as the basic

distance between any two elements of X, and the minimum distance as the link-

age distance for defining the sub-set distanceΔ(Xi, Xj) = minx∈X,y∈Xj D(x, y).

Here is an excerpt of that data-set that describes some features for the car data-

set:

mpg cyl disp hp drat wt qsec vs am gear carb

Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4

Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4

Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1

Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1

Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2

Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1

Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4

Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2

Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2

Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4

Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4

Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3

Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3

Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3

Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4

Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4

Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4

Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1

Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2

Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1

Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1

Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2

AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2

Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4

Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2

Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1

Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2

Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2

Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4

Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6

Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8

Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2

Notice that the visual drawing of hierarchical clusterings, dendrograms,

conveys rich information for both qualitative and quantitative evaluations of

various hierarchical clustering techniques that we shall present below.

To contrast with agglomerative hierarchical clustering, we also have divisive

hierarchical clustering that starts from the root containing all the data-set X,

and splits this root node into two children nodes containing respectively X1

and X2 (so that X = X1 ∪X2 and X1 ∩X2 = ∅), and so on recursively until

we reach leaves that store in singletons the data elements. In the remainder,

we concentrate on agglomerative hierarchical clustering (AHC) that is mostly

used in applications.

1 Download and install R from the following URL: http://www.r-project.org/
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Figure 8.3 Example of a dendrogram for a car data-set: The data elements

are stored at the leaves of the binary merge tree.

8.2 Strategies to define a good linkage distance

Let D(xi, xj) denote the elementary distance between any two elements of

X (for example, the Euclidean distance). In order to select at each stage of

the hierarchical clustering the closest pair of sub-sets, we need to define a

sub-set distance Δ(Xi, Xj) between any two sub-sets of elements. Of course,

when both sub-sets are singletons Xi = {xi} and Xj = {xj}, we should have

Δ(Xi, Xj) = D(xi, xj). We present below three such common linkage functions:

1. Single Linkage (SL):
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Δ(Xi, Xj) = min
xi∈Xi,xj∈Xj

D(xi, xj)

2. Complete Linkage (CL) (or diameter):

Δ(Xi, Xj) = max
xi∈Xi,xj∈Xj

D(xi, xj)

3. Group Average Linkage (GAL):

Δ(Xi, Xj) =
1

|Xi||Xj |
∑

xi∈Xi

∑
xj∈Xj

D(xi, xj)

Figure 8.4 visualizes pictorially those three different linkage functions.

Single Linkage
SL (minimum distance)

Complete Linkage
CL, diameter

Group Average
GA, mean distance

Figure 8.4 Illustrating the common linkage functions defining distances

between sub-sets: single linkage, complete linkage and group average linkage.

There exist many other sub-set distances Δ that are commonly called

linkage distances because they literally allow one to link sub-trees representing

the sub-sets in the dendrogram representation.

8.2.1 A generic algorithm for agglomerative hierarchical
clustering

We summarize below the principle of the generic agglomerative hierarchical

clustering (AHC) for a prescribed linkage distance Δ(·, ·) (user-defined and

relying on yet another used-defined element distance):

Algorithm AHC



226 8. Hierarchical clustering

– Initialize for each data element xi ∈ X its cluster singleton Gi = {xi} in a

list

– While there remains two elements in the list, do:

– Choose Gi and Gj so that Δ(Gi, Gj) is minimized among all pairs,

– Merge Gi,j = Gi ∪Gj , and

• add Gi,j to the list, and

• remove Gi and Gj from the list.

– Return the remaining group in the list (Groot = X) as the dendrogram root.

Since we start from n = |X| leaves to finish with a root containing the

full set X, we perform exactly n − 1 merge operations. A straightforward

implementation of this AHC algorithm yields a cubic time complexity, in O(n3).

Depending on the linkage distance, we can optimize this naive algorithm and

obtain far better time complexities.

Observation 4

Notice that in general the dendrogram may not be unique for a linkage distance

function: Indeed, there can be several “closest” pairs of subsets, but we choose

only one pair at each iteration and reiterate (thus breaking the symmetry, say,

by introducing a lexicographic order on the pairs). In other words, if we had

applied a permutation σ on the elements of X, and re-run the AHC algorithm,

we could have obtained another dendrogram in output. For numerical data, we

can slightly perturbate the initial data-set by adding some small random noise

drawn uniformly in (0, ε) to bypass this problem. However, for categorical data,

the problem still remains and therefore careful attention should be given to

handle this problem.

The standard optimized AHC algorithm is called SLINK [79] (1973),

and has a quadratic complexity, in O(n2) time. Single-linkage AHC yields

a “chaining phenomenon” in dendrograms as depicted in Figure 8.5. The

AHC algorithm with complete linkage (also called diameter linkage) is called

CLINK [23] (1977), and can be computed in O(n2 log n) time. One disad-

vantage of complete linkage is that it is very sensitive to outliers (that is,

artifact data that should have been removed beforehand when possible — the

cleaning stage of data-sets). At first glance, the group average AHC is more

computationally costly to compute but can also be optimized as well to get a

sub-cubic time complexity. Usually, we recommend in applications the group
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Figure 8.5 Comparisons of dendrograms obtained from agglomerative

hierarchical clustering for three commonly used linkage functions: single linkage

(top), complete linkage (middle) and group average linkage (bottom).
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average AHC algorithm that does not produce chaining phenomena and is more

robust to noisy input.

8.2.2 Choosing the appropriate elementary distance
between elements

The base distance function D(·, ·) plays a crucial role on the shape of

dendrograms. This distance function is a dissimilarity measure that evaluates

how different element xi is from element xj (for any pair of elements). Although

we often use the Euclidean distance, we can also choose other metric distances2

like the city block distance (called the Manhattan distance or the L1-norm

induced distance3):

D1(p, q) =
d∑

j=1

|pj − qj |

Recall that we use the super-script notation x = (x1, ..., xj , ..., xd) for an

attribute vector x with d components: the xj ’s are the coordinates of a d-

dimensional vector x.

We can also use the Minkowski distances that generalize both the Euclidean

distance (for m = 2) and the Manhattan distance (for m = 1):

Dm(p, q) =

⎛
⎝

d∑
j=1

|pj − qj |m
⎞
⎠

1
m

= ‖p− q‖m,m ≥ 1

When the data coordinates have different scale factors, or are correlated,

we better use the Mahalanobis distance4:

DΣ(p, q) =
√

(p− q)�Σ−1(p− q) = D2(L
�p, L�q)

with the precision matrix (inverse of the covariance matrix) Σ−1 = L�L being

factorized by the Cholesky matrix (matrix L is a lower triangular matrix).

That is, the Mahalanobis distance DΣ(p, q) amounts to compute a traditional

Euclidean distance D2(L
�p, L�q) after an affine change of variable: x← L�x.

Matrix Σ is called the covariance matrix, and its inverse matrix Σ−1 is called

2 satisfying the symmetry (D(p, q) = D(q, p), the law of indiscernability (D(p, q) = 0
if and only if p = q), and the triangular inequality (for all triplesD(p, q) ≤ D(p, r)+
D(q, r)). See Section 8.5 that introduces ultra-metrics.

3 A norm ‖.‖ induces a distance D(p, q) = ‖p− q‖
4 A metric distance that is symmetric and satisfies the triangle inequality.
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the precision matrix. We can estimate the covariance matrix from a data-set

sample x1, ..., xn by computing:

Σ =
1

n− 1

n∑
i=1

(xi − x̄)(xi − x̄)�,

with x̄ = 1
n

∑n
i=1 xi the empirical mean, also called the sample mean.

For categorical data (that is non-numerical), we often use an agreement

distance like the Hamming distance:

DH(p, q) =

d∑
j=1

1[pj �=qj ]

where 1[a �=b] = 1 if and only if a �= b, and zero otherwise. That is, the Hamming

distance counts the number of times corresponding attributes are different from

each other. The Hamming distance is a metric distance.

Often, we can link a similarity measure to a dissimilarity measure, and vice-

versa. For example, considering the Hamming distance on d-dimensional binary

vectors, we can define the corresponding similarity measure by SH(p, q) =
d−DH(p,q)

d (with 0 ≤ SH(p, q) ≤ 1, and maximal similarity when p = q).

There exist many other distance functions that have been used in a broad

panel of applications. Let us cite the Jaccard distanceDJ(A,B) = |A∩B|
A∪B defined

on sets, the edit distance for finding distance between combinatorial structures

(like texts or DNA sequences), the cosine distance Dcos(p, q) = 1 − p�q
‖p‖‖q‖

(very useful when analyzing a corpus of texts with documents represented by

a frequency histogram of word occurencies), etc.

8.3 Ward merging criterion and centroids

One can also take a sub-set distance Δ according to the centroids of the sub-

sets. This criterion allows us to implement a variance minimization process.

This yields the Ward linkage function: To merge Xi (ni = |Xi|) with Xj (nj =

|Xj |), we consider the following Ward criterion:

Δ(Xi, Xj) =
ninj

ni + nj
‖c(Xi)− c(Xj)‖2

where c(X ′) denotes the centroid of subset X ′ ⊆ X: c(X ′) = 1
|X′|

∑
x∈X′ x

(we may consider weighted points too). Observe that the distance between two

elements induced from the sub-set distance Δ is merely half of the squared
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Euclidean distance: Δ({xi}, {xj}) = D(xi, xj) = 1
2‖xi − xj‖2. Figure 8.6

illustrates visually the difference between the dendrograms obtained from the

group average AHC and from the Ward AHC (of minimal variance).
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Figure 8.6 Comparing dendrograms obtained for (a) the group average

linkage, and (b) Ward linkage.

Notice that we can always define the similarity S(Xi, Xj) between two

sub-sets by defining S(Xi, Xj) = −Δ(Xi, Xj). The merging steps of a path

sequence of length l in the tree dendrogram are said monotonous when we

have the property that S1 ≥ S2 ≥ ... ≥ Sl. A hierarchial clustering is said

non-monotonous when there exists at least one inversion, say Si < Si+1,

on a path from the leaves to the root of the dendrogram. The Ward AHC

is not monotonous because there can exist inversions. However, the single

linkage, complete linkage and group average linkage are all guaranteed to be

monotonous.

When we draw the nodes of the merge tree (i.e., nodes of the dendrogram)

using a height function defined as the similarity, an inversion in a dendrogram

can be noticed graphically by the fact that one horizontal height line can

be lower than another horizontal height line for a former merging operation.

Indeed, this contradicts the fact the nodes on a path from a leaf to the root

should be y-monotonous. Figure 8.7 illustrates an inversion in a dendrogram.
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Figure 8.7 Example of an inversion phenomenon in a dendrogram obtained

when using Ward’s criterion for hierachical clustering on a toy data-set of a

triple of elements.

8.4 Retrieving flat partitions from dendrograms

From a dendrogram, we can extract many different flat partitions. Figure 8.8

illustrates this concept by displaying two constant-height cuts that induce

respective partitions of the data sets. Note that the cutting path on the

dendrogram does not need to be at constant height in general (see exercise 8.8).

8.5 Ultra-metric distances and phylogenetic
trees

A distance function D(·, ·) is called a metric if it satisfies the following three

axioms:

Law of indiscernability. D(x, y) ≥ 0 with equality iff. x = y,

Symmetry. D(x, y) = D(y, x)

Triangular inequality. D(x, y) ≤ D(x, z) +D(z, y),

The Euclidean distance and the Hamming distance are two examples of

metric distances. Beware that the squared Euclidean distance is not a metric

although it is symmetric and satisfies the law of indiscernability. Indeed, the

triangular inequality is not anymore satisfied when we take the square of the

Euclidean distance (however, recall that the squared Euclidean distance is used

to define the potential function of the k-means in flat clustering in order to get

centroids and minimizes of cluster variances). The law of indiscernability can

further be split into two sub-axioms: The law of non-negativity D(p, q) ≥ 0,

and the law of reflexivity: D(p, q) = 0⇔ p = q.
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Figure 8.8 Retrieving flat partitions from a dendrogram: We choose the

height for cutting the dendrogram. At a given height, we obtain a flat clustering

(that is a partition of the full data-set). The cut path does not need to be at a

constant height. Thus a dendrogram allows one to obtain many flat partitions.

Here, we show two different cuts at constant height, for h = 0, 75 and h = 1, 8.

Hierarchical clustering is tightly linked to a class of distances called the

class of ultra-metrics. A distance is said ultra-metric if it is a metric and further

ensures that:
D(x, y) ≤ max

z
(D(x, z), D(z, y)).

Let us now explain the link between ultra-metrics and hierarchical cluster-

ing: In evolution theory, species evolve with time, and the distance between

species is represented by a so-called phylogenetic tree. Let us write for short
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Di,j = D(xi, xj). A tree is said additive if and only if we can attach to each

edge a weight so that for each pair of leaves, the distance between them is equal

to the sum of the distances of the edges linking them. A tree is said ultra-

metric when the distance between two leaves, say i and j, and their common

ancestor, say k, is equal: Di,k = Dj,k. We can draw an ultra-metric tree by

choosing the height distance 1
2Di,j for visualizing a dendrogram. This distance

can be interpreted as a clock time among all the elements of X (for species, it

represents the biological time).

The group average AHC guarantees to produce an ultra-metric tree. We

shall call this hierarchical clustering that embeds the nodes of the tree with its

height the Unweighted Pair Group Method using arithmetic Averages algorithm

(or UPGMA, for short). We write in pseudo-code this algorithm below:

Algorithm UPGMA :

– For all i, initialize xi to its cluster Ci = {xi}, and set this node leaf to height

0.

– While there remains at least two clusters:

– Find the closest pair of clusters Ci and Cj that minimizes the group average

distance Δi,j ,

– Define a new cluster Ck = Ci ∪Cj and compute the distance Δk,l for all l,

– Add a node k to the children Ci and Cj , and set the height of that node

to 1
2Δ(Ci, Cj),

– Remove both Ci and Cj from the cluster list, and reiterate until we get

two remaining clusters.

– For the last two clusters Ci and Cj , set the root node at height 1
2Δ(Ci, Cj).

Theorem 9

When the matrix distance M = [Di,j ]i,j with Di,j = D(xi, xj) of a data-set X

satisfies the ultra-metric property, then there exists a unique ultra-metric tree

that can be built with the UPGMA algorithm.

Phylogenetic trees are often used when modeling the evolution of species:

We associate to the vertical axis the chronological time of evolution, as depicted

in Figure 8.9. The UPGMA allows to build such an ultra-metric tree. However

let us emphasize that data-sets are often noisy and therefore the matrix distance

is often not ultra-metric since corrupted. Another drawback is that we need to
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Figure 8.9 Dendrograms and phylogenetic trees for visualizing the evolution

of species.

consider the matrix of pairwise distances that requires a quadratic memory

space, and can therefore only be limited to reasonable size data-sets (but not

big data as is!).

8.6 Notes and references

There exist many hierarchical clustering algorithms. Let us cite SLINK [79]

(Single Linkage, 1973), CLINK [23] (Complete Linkage, 1977), and a gen-

eral survey [68] providing a high-level abstraction of hierarchical clustering.

Although that flat clustering minimizing the k-means objective function is

NP-hard (even in the plane), it has been recently proved (2012) that we

can extract from a single linkage hierarchical clustering the optimal k-means

clustering provided that some stability criterion is satisfied, see [6] (the

extraction of the flat partition is performed using dynamic programming to

find the best non-constant height dendrogram cut). The hierarchical clustering

that minimizes Ward’s variance criterion and its related criteria have been

thoroughly investigated in [89, 69]. Various hierarchical clustering algorithms
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(including SLINK, CLINK and Ward) can be unified in the generic Lance-

Williams framework, see [57] and exercise 8.8. Uniqueness and monotonic

properties of hierarchical clustering have been studied in [67]. Although that

hierarchical clustering algorithms are a priori harder to parallelize compare to

flat clustering techniques (like k-means), let us mention this work [74] that

reports an efficient parallel algorithm. We refer to [70] for an explanation

of the divisive hierarchical clustering technique that maximizes the notion of

modularity. Distances is at the core of many algorithms: We recommend the

encyclopedia of distances [24] for a compact review of main distances.

8.7 Summary

Agglomerative hierarchical clustering differs from partition-based clustering

since it builds a binary merge tree starting from leaves that contain

data elements to the root that contains the full data-set. The graphical

representation of that tree that embeds the nodes on the plane is called a

dendrogram. To implement a hierarchical clustering algorithm, one has to

choose a linkage function (single linkage, average linkage, complete linkage,

Ward linkage, etc.) that defines the distance between any two sub-sets (and rely

on the base distance between elements). A hierarchical clustering is monotonous

if and only if the similarity decreases along the path from any leaf to the

root, otherwise there exists at least one inversion. The single, complete, and

average linkage criteria guarantee the monotonic property, but not the often

used Ward’s criterion. From a dendrogram, one can extract many data-set

partitions that correspond to flat clustering output. Phylogenetic trees used

to model the evolution of species are ultra-metric trees. Hierarchical clustering

using the average linkage guarantees to build an ultra-metric tree when the

base distance between any two elements is ultra-metric.

8.8 Exercises

Exercise 1: Checking the ultra-metric property of a distance matrix

Let M denote a square matrix of dimension n × n that stores at index (i, j)

the distance D(xi, xj) between element xi and element xj .
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– Design an algorithm that checks whether the distance matrix satisfies the

ultra-metric property or not,

– What is the time complexity of your algorithm?

Exercise 2: Euclidean metric distance and Hamming metric distance

– Prove that the Euclidean distance is a metric, but not the squared Euclidean

distance.

– Prove that the Hamming distance satisfies the axioms of a metric.

– Prove that the distance D(p, q) =
(∑d

j=1 |pj − qj |m
) 1

m

for 0 < m < 1 is

not a metric (when m ≥ 1, recall that it is the m-norm induced Minkowski

metric distance).

Exercise 3: Combining flat clustering with hierarchical clustering

Let X = {x1, ..., xn} be n data elements, each datum has d attributes.

– Give an algorithm that clusters hierarchically the data, and retrieve a

partition of at most l elements (for large l, it produces an over-clustering),

and use after a k-means algorithm on the centroids of these groups. What

kind of applications can you think of that strategy?

– What is the complexity of your algorithm? Explain its advantages compare

to only hierarchical clustering or to only partition-based clustering?

Exercise 4: Hierarchical clustering of Lance and Williams [57]

– State the hierarchical clustering algorithm using the following shortcut

notations Dij = Δ(Ci, Cj) and D(ij)k = Δ(Ci ∪ Cj , Ck) for disjoint groups

Ci, Cj and Ck.

– A hierarchical clustering belongs to the Lance-Williams family if and only if

it can be written canonically as:

D(ij)k = αiDik + αjDjk + βDij + γ|Dik −Djk|,
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with αi, αj , β, and γ parameters depending on the size of clusters. Prove

that Ward minimum variance criterion (D(xi, xj) = ‖xi − xj‖2) for disjoint
groups Ci, Cj and Ck yields the following formula:

D(Ci ∪ Cj , Ck) =

ni + nk

ni + nj + nk
D(Ci, Ck) +

nj + nk

ni + nj + nk
D(Cj , Ck)− nk

ni + nj + nk
D(Ci, Cj).

– Deduce that Ward’s algorithm is a particular case Lance-Williams’s generic

hierarchical clustering with the following parameterization:

αl =
nl + nk

ni + nj + nk
, β =

−nk

ni + nj + nk
, γ = 0.

– Prove that Lance-Williams’ algorithm unify single linkage, complete linkage

and group average linkage.

Exercise 5: Centroid-based hierarchical clustering for an arbitrary convex

distance function

For a convex distance D(·, ·), let us define the centroid of X as the unique

minimizer of minc
∑

x∈X D(x, c). Prove that the inversion phenomenon that

can happen for Ward criterion does not happen for the Euclidean distance nor

for the Manhattan distance (two examples of convex distances).

Exercise 6: * Retrieving the best k-means flat partition from a hierarchical

clustering [6]

Given a dendrogram, one can extract many different partitions:

– How many distinct partitions can be retrieved from a dendrogram?

– For a sub-set X ′, let us denote by c(X ′) the centroid of X ′ and by v(X ′)
its variance: v(X ′) = 1

|X′|
∑

x∈X′ x�x − (c(X ′)�c(X ′))2. Give a dynamic

programming code for retrieving the best k-means flat clustering from a

dendrogram. What is the time complexity of your algorithm?

Exercise 7: * Cosine distances between documents and spherical k-means

Let p and q be two vectors of d attributes, and consider the cosine distance:

D(p, q) = cos(θp,q) = 1 − p�q
‖p‖‖q‖ . The cosine distance is an angular distance

that does not account for the magnitude of vectors. For a collection of text
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documents, we model a text t by its word frequency/counting vector f(t) (given

a word dictionary).

– Prove that the cosine distance is a metric,

– Design an agglomerative hierarchical clustering that allows one to cluster

text documents,

– Generalize the k-means flat clustering to a partition-based clustering algo-

rithm relying on the cosine distance. We shall consider attribute vector as

a point set lying on the unit sphere, and prove that the spherical centroid

is the Euclidean centroid projected back to the unit sphere (when all points

are enclosed into the same hemisphere). How to define the spherical centroid

of two antipodal points on the unit sphere centered at the origin?

Exercise 8: * Hierarchial clustering for Bregman divergences [83]

Bregman divergences are non-metric distances that are defined according a

strictly convex and differentiable convex generator function F (x) by:

DF (x, y) = F (x)− F (y)− (x− y)�∇F (y),

where ∇F (y) = ( d
dy1F (y), ..., d

dydF (y)) denotes the gradient vector.

– Prove that for F (x) = x�x, the Bregman divergence amounts to the squared

Euclidean distance.

– Prove that Bregman divergences can never be a metric, and that the squared

Mahalanobis distance is a symmetric Bregman divergence.

– Generalize Ward’s criterion for Bregman divergences as follows:

Δ(Xi, Xj) = |Xi| ×DF (c(Xi), c(Xi ∪Xj)) + |Xj | ×DF (c(Xj), c(Xi ∪Xj)),

where c(Xl) is the center of mass ofXl. Check that for the Bregman generator

F (x) = 1
2x
�x, we get the usual Ward’s criterion.

– Report a Bregman hierarchical clustering algorithm. Can inversion phenom-

ena happen?

Exercise 9: ** Single linkage hierarchical clustering and minimum spanning

tree [36]

Give a naive implementation of the single linkage hierarchical clustering. What

is the time complexity of your naive algorithm? Given a planar point set X =
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{x1, ..., xn}, the Euclidean Minimum Spanning Tree (MST) is a tree with nodes

anchored at all points ofX so that the sum of all tree edge lengths is minimized.

Prove that the MST is a subgraph of the Delaunay triangulation (the dual

structure of the Voronoi diagram). Prove that the edge information contained in

the Euclidean minimum spanning tree allows one to easily deduce the structure

of the single linkage dendrogram. As a byproduct, report a quadratic time

algorithm for the single linkage hierarchical clustering.


